

DOCUMENTATION Shock code

THE ISM TEAM OF PARIS OBSERVATORY March 11, 2020

Image of the bipolar jet HH212 in the ro-vibrational H₂ line v = 1-0 S(1) at 2.12 μ m tracing hydrogen molecules shock-heated to \simeq 2000 K, and revealing a series of remarkably symmetric bowshocks caused by periodic outbursts in the jet (Credit: J. Bally, U. of Colorado, USA).

1	Ove	rview	5
	1.1	The "Paris-Durham" shock code in a nutshell:	6
	1.2	Main ingredients in the Paris-Durham code	7
		1.2.1 Dynamics	7
		1.2.2 Heating and cooling processes	8
		1.2.3 Chemical species and grains	9
		1.2.4 Chemical network	9
2	Insta	allation and run on local computers	11
3	Inpu	ıt files	15
	3.1	Summary of input parameters in input_mhd.in	15
	3.2	The chemical species file "species.in"	18
	3.3	The chemical network file "chemistry.in"	20
4	Outp	out files	23
	4.1	ASCII output files	23
	4.2	hdrf5 output files	24
5	A no	on-exhaustive bibliography	25
	5.1	Basic ISM shock theory	25
	5.2	First series of papers on the Paris-Durham shock code	26
	5.3	Updates of the Paris-Durham shock code	27
	5.4	Spinoffs	29
	5.5	A selection of observational applications of the Paris-Durham shock code	30
Α	Mod	lel formalism	37
	A.1	Setup of the problem and notations	37
	A.2	Multi-fluid dynamical equations	37
В	Sou	rce terms: chemistry and collisions	41
	B.1	Number and mass of particles	41
	B.2	Momentum	41
	B.3	Energy	42
С	Sou	rce terms : molecular cooling	47
	C.1	Basics of molecular rotational and vibrational excitation	47

	C.2	The case of molecular hydrogen	48
		C.2.1 Molecular hydrogen cooling	48
	C.3	Cooling by other molecules	50
D	Exai	mple of "species.in" file	51
Е	Exai	mple of "chemistry.in" file	53

Overview

This document presents the main ingredients of the "Paris-Durham" Shock Code distributed on the ISM Platform of the Paris Observatory Data Center at http://ism.obspm.fr. It provides all the necessary information to run its last public version, and use its output files.

The last current version, **V1.1**, allows for an external far-ultraviolet (FUV) irradiation field and for the crossing of sonic point. It is described in Godard et al. 2019 [51].

The rest of this chapter presents the main physical and chemical ingredients of the model, and its limitations. Chapter 2 presents instructions for installing and running the code on your local computer. Chapters 3 and 4 describe in detail the input and output files, respectively. Chapter 5 contains suggested reading and a selected bibliography, that the interested user is strongly advised to consult. Appendices present complementary material (including the main equations solved by the code in the C-shock case, and examples of input chemical files).

The source code is distributed under an open licence GPL V3. Applications using any parts of the code must be distributed under the same license or higher.

Acknowledgement and citations

For statistical purposes, please acknowledge in your publications the use of this code and the ISM Platform Service as:

This work has made use of the Paris-Durham public shock code Vx [where x stands for the version that you used], distributed by the CNRS-INSU National Service "ISM Platform" at the Paris Observatory Data Center (http://ism.obspm.fr)

Please also refer to the following papers:

- Flower, D. R., Pineau des Forêts, G., & Hartquist, T. W., 1985, MNRAS, 216, 775, and
- for V0: Flower, D. R., & Pineau des Forêts, G., 2003, MNRAS, 343, 390
- for V1.1: Godard, B., Pineau des Forêts, G., Lesaffre, P., et al. 2019, A&A 622, A100
- if you used option Cool_KN=1: Neufeld, D.A. & Kaufman, M.J. 1993, ApJ 418, 263

Contact:

For questions and suggestions of updates, please do not hesitate to contact the scientific team in charge of code development and documentation (B. Godard, S. Cabrit, A. Gusdorf, P. Lesaffre, G. Pineau des Forêts). The generic email address is *shock.support@obspm.fr*.

Credits:

The interactive software tools to run the on-line version and to analyse the hdf5 output files are developed and maintained by David Languignon, Nicolas Moreau and Carlo-Maria Zwolf (LERMA, Observatoire de Paris).

1.1 The "Paris-Durham" shock code in a nutshell:

The code was originally created jointly by David Flower (Durham, UK) & Guillaume Pineau des Forêts (IAS Orsay, France) to treat multi-fluid MHD shocks in the diffuse interstellar medium [12]. It was then continuously updated and developed to include an ever growing number of microprocesses and physical situations. A list of the main updates and of the papers that describe them is given in Chapter 5.

Its fields of application include galactic interstellar shocks driven by

- super-alfvénic turbulence and cloud collisions
- jets and outflows from forming stars
- slow AGB winds
- old supernova remnant shells.

Extra-galactic applications have also been developed recently.

Main assumptions and geometry: This shock code calculates the

- steady-state $(\partial/\partial t = 0)$ dynamical, thermal, and chemical structure of a
- plane-parallel shock wave propagating in a
- molecular and dusty homogeneous medium permeated by
- a uniform magnetic field transverse to the shock propagation, and possibly irradiated by
- an external FUV field from upstream (see Figure 1.1).

Types of shocks:

The code can handle all the possible shock types for a transverse B-field:

- steady "jump" (J-type) shocks, where the gas is suddenly compressed across a viscous front.

- steady "continuous" (C-type) shocks, where ions and neutral decouple and the neutral fluid remains supersonic throughout.

- young C-shocks (where the C-type precursor is truncated and followed by a truncated J-front).
- steady C* and C-J shocks, where the neutral fluid goes through a sonic point [51].

Range of validity and limitations: The thermo-chemistry is validated up to $n_H \le 10^8$ cm⁻³ and $G_0 \le 10^5$. The code does not (yet) treat the transfer of Lyman photons, and only considers singly ionized species, hence J-shocks should be restricted to $V_s \le 30$ km s⁻¹. Grain-grain collisions are not (yet) included, hence the release of refractory and ice species in gas phase is underestimated (for detailed modeling see [60, 61, 62]).

The main strength of the Paris-Durham model is that it *solves in parallel for the* dynamics and nonequilibrium chemistry: Indeed, ionization regulates the decoupling between neutral and charged fluids ("magnetic precursor"), ion-neutral drag heating, and gas-grain sputtering, which in turn has a strong feedback on the shock dynamics. This ensures a self-consistent solution.

Observational predictions: The code also computes and outputs the *predicted surface brightness (erg/s/cm²/sr)* in optically thin lines of H₂ and atomic lines (O, C, C⁺, N, N⁺, Si, Si⁺, S, S⁺, Fe⁺) that can be directly compared with observations, eg. with JWST. Line profiles for optically thick molecules (eg. CO, H₂O, SiO, OH, CH₃OH, NH₃ etc..) can be computed a posteriori from local abundances, temperature, and density, e.g. in the Large-Velocity-Gradient (LVG) approximation.

Figure 1.1: This figure represents the different zones in a planar C-type shock irradiated from upstream: the preshock radiative buffer in light blue, which must be computed separately (from the ionization front IF up to the desired attenuation A_V^0) to provide initial conditions for the shock; The C-shock layer per se in yellow; and its post-shock region in purple (defined as the region with no further compression) whose contribution to the line intensities is not included. Some key parameter notations are also indicated. From [51].

1.2 Main ingredients in the Paris-Durham code

1.2.1 Dynamics

The Paris-Durham shock code computes the coupled evolution of velocity, density, temperature and chemical abundances along the 1D flow assuming steady-state; this is made by integrating as a function of z (see Figure 1.1) a series of ordinary coupled differential equations describing the conservation of particle number, mass, momentum, energy, in each fluid (neutrals, ions, electrons), and the rate of change of each chemical species. These equations are presented in Appendix A in the case of C-type shocks, and the corresponding momentum and energy source terms, including chemical reactions, are detailed in Appendix B. The H₂ level populations are also integrated in parallel with the dynamics (as they can deviate from local equilibrium). The full set of coupled equations is solved with the DVODE integrator, able to handle stiff systems.

The type of steady shock wave allowed to propagate through the medium depends crucially on its magnetization and ionization properties.

If V_s is larger than the magneto sonic speed in the charged fluid $V_{A,c} = B/\sqrt{4\pi\rho_c}$ (where the density ρ_c of the charged fluid includes the inertia of charged grains coupled to the magnetic field), then no magnetic precursor can develop; only a viscous J-type shock front can form. (runs with the 'C' option in such a case will not give any sizable change in variables).

In contrast, if $V_s < V_{A,c}$, a C-type magnetic precursor can develop in the charged fluid, where ions are rapidly decelerated by the magnetic pressure gradient while the neutrals are decelerated much more progressively by collisions with the slower ions (see Figure 1.1). These ion-neutral collisions dissipate the incident kinetic energy flux over a much wider region (of order the mean free path of neutrals through the ions) than in J-type shock (where it is dissipated over the viscous length = mean free path of neutrals through neutrals). If the gas cools sufficiently well to remain supersonic, a steady C-shock results. If a sonic point is encountered, a C* shock or a steady C-J shock result. Such transitions occur as soon as $G_0 > 0.2\sqrt{n_H/cm^{-3}}$ [51] and are automatically handled by version V1.1 of the shock code.

1.2.2 Heating and cooling processes

The cooling mechanisms included in the code are

- H₂ line cooling following collisional excitation by H, H₂, He, H⁺, and electrons [?],
- Rotational and vibrational radiative cooling by CO, H₂O, and ¹³CO in the Large Velocity Gradient approximation [10]
- Pure rotational cooling by OH and NH₃ in the low-density optically thin limit [12],
- Atomic cooling by fine-structure and metastable lines of C, N, O, S, Si, C⁺, N⁺, O⁺, S⁺, Si⁺ [47] and Fe⁺ [?].
- Inelastic scattering of electrons on H and H₂ [?, ?, ?],
- · Collisional dissociation and ionisation

The heating mechanisms included in the code are

- · Viscous and compressive heating
- Ambipolar-diffusion heating = elastic scattering between the neutral fluid and charged ions and grains,
- Heating by cosmic-rays
- · Photoelectric effect on small grains and PAHs
- Photoionization and photodissociation heating [12]
- Collisional de-excitation of H₂ levels, including FUV-pumped or formation-pumped H₂

Additional mechanisms are included that can either heat or cool :

- Energy heat / loss through gas-grain collisions [?]
- Enthalpy transfer between the neutral, ion, and electron fluids [12] (net balance = 0)
- Exo / endo-thermicity of chemical reactions [12]

The reader is referred to the corresponding references for a discussion of the physical context and hypotheses involved in modelling each of the above processes.

1.2.3 Chemical species and grains

Chemical species can be constructed from any of the elements H, D, He, C, N, O, Na, Mg, Si, S, Fe. They can be neutral, singly ionized, on grain icy mantles (name followed by *), or inside grain refractory cores (name followed by **). The list of species to be integrated by the code is read from an input file species.in, with a specific format described in Chapter 3. It can be modified by the user to suit specific needs. Standard models involve 134-138 species (see eg. Appendix ??).

A representative polycyclic aromatic hydrocarbon (PAH) species can be included ($C_{54}H_{18}$), that can be singly charged and contribute to ion-neutral coupling [32].

Finally, a representative grain species (G) is also included to track the grain charge. The number of grains per H nucleus is determined self-consistently from the initial mass of refractory elements in grain cores, the initial grain size distribution, and the core bulk density (all user-specified, see Section 3).

The thickness of ice mantles is determined self-consistently from the total abundances of elements in mantles, the ice bulk density specified by the user (see Section 3), and the size distribution of grain cores at the current point.

1.2.4 Chemical network

The list of reactions used by the code can be freely specified by the user (see Section [?]). The standard network involves \approx 1000 reactions linking about 130 species. But it can be expanded to include, eg., deuterated species.

The current version of the code allows for the following types of gas-phase chemical reactions (limited to a maximum of 4 products):

- neutral-neutral reactions
- ion-neutral reactions (enhanced by ion-neutral drift, following the effective temperature prescription of [?]). Reverse reactions are included up to an endothermicity of 2 eV.
- · radiative and dissociative recombinations
- charge exchange
- · Ionisation and dissociation by secondary energetic electrons from cosmic ray ionizations
- photodissociation by "secondary photons" close to 1000 Å from H₂ Lyman fluorescence excited by secondary electrons [?]
- Ionisation and dissociation by far-ultraviolet (FUV) photons, including an approximate treatment for self-shielding of H₂ and CO [50, 51]

Some chemical reactions involving H_2 are treated level by level for improved accuracy:

• H₂ reformation on grains (with sticking coefficient from [?])

- H₂ ortho to para conversion [42]
- H₂ collisional dissociation (following [?])

The code also models several processes that transfer species between grains and gas:

- sputtering of icy mantles by drifting heavy neutrals (with attendant reduction in mantle thickness)
- sputtering ("erosion") of refractory species from grain cores by drifting heavy neutrals (with attendant reduction in grain core size)
- charge balance of grains and PAHs (treated as in [32])
- · adsorption of species on ice mantles, immediately followed by complete saturation
- FUV-induced and cosmic-ray induced desorption from ice mantles [51]
- thermal desorption of ice mantles [51]

Installation and run on local computers

Requirements

All versions of the Paris-Durham Shock code require a recent Fortran 90 compiler.

Python 2.7 and Python modules (numpy, h5py, PyQt4) are not mandatory, but they are also required if you wish to produce output files in HDF5 format. The same Python modules are also required to run the two interactive tools **Extractor** and **ChemistryAnalyzer** provided in the release package, that allow to browse these HDF5 files and analyze interactively the code results, in particular to check the dominant chemical reactions for producing a given species.

Installation of Python 2.7 and required modules with MacPorts on Mac:

sudo port install python27 py27-numpy py27-h5py py27-pyqt4

Installation of Python 2.7 and required modules on Ubuntu with apt-get:

```
sudo apt-get install gfortran libblas3gf libblas-doc
libblas-dev liblapack3gf liblapack-doc liblapack-dev
```

The procedure to install the code is:

- 1- download the source code at http://ism.obspm.fr (go to the 'Shock' page, then to the 'Download' page, then click on the "download" link corresponding to the desired version)
- 2- unwrap the zip archive; it will create a "Shock" directory (Shock_1.1_godard2019) that you can rename to your taste.

The "Shock" directory should contain the following subdirectories:

- src: with all FORTRAN source codes
- bin: with Makefile and all compiled modules
- input: with all input parameter files, chemistry files, as well as atomic, molecular and grain data. - output: will contain subdirectories (one per run) with output files

- AnalysisTools: contains the two Python tools Extractor and ChemistryAnalyzer to analyze HDF5 files, and their Documentation files Doc_Extractor.pdf and Doc_ChemistryAnalyzer.pdf. - mtx: numerical libraries

To finish the installation:

- 3- go to bin/ and edit and configure the file Makefile to suit your local compiler
- 4- compile the code with make

This should create the executable mhd_vode in the "Shock" directory.

First test run

Go back to your main "Shock" directory and type ./mhd_vode. This will run the code with the default input files present in input/. It is a standard C-shock with $V_s = 10 \text{ km s}^{-1}$, $n_H = 10^4 \text{ cm}^{-3}$, magnetic field scaling parameter b = 1, and no FUV field ($G_0 = 0$). The execution time on a laptop should be about 10 minutes.

All the output files will be written in the subdirectory <code>output/example_shock/</code>. The content of these output files is described in Chapter 4.

Now, edit the input file input/input_mhd.in and change the value of the parameter modele from "example_shock" to something else, such as "Cv10n4b1G0". Then, go back up to the "Shock" directory and re-run the code. It will write the output files in a different subdirectory output/Cv10n4b1G0, created with the new name that you gave. This prevents the code from overwriting the output files of consecutive model runs !

We recommend using short names for output directories, that recall the main shock parameters (e.g."Cv10n4b1G0").

The other input parameters, and how to modify them to suit one's need, are described in Chapter 3.

Basic instructions for a specific shock run

The basic steps to compute a new shock model, and the most important input parameters to set at each step are the following:

Step 1: Compute the relevant thermo-chemical pre-shock conditions:

Of course, this first step only needs to be done once for a given set of environmental conditions. The following input parameters must be carefully set in the input file input_mhd.in(described in more detail in Chapter 3) :

- Name of file with chemical network (with or without ice adsorption/desorption)
- Name of file with initial species abundances (generally only atoms + H₂ + grains for pre shock)
- · Name of output directory for pre shock run
- Preshock density n_H
- Type of pre-shock : S1 = isodensity with constant FUV, S2 = isobaric with constant FUV, P1 = isodensity with FUV attenuation, P2 = isobaric with FUV attenuation
- Incident FUV field intensity G₀ at the ionization front (IF), in units of the local interstellar FUV field
- FUV attenuation A_V_0 at z = 0 ($\simeq 10^{-9}$ for P1 and P2 types, any value for S1 and S2)
- Advection speed V_s from ionization front (≤ 0.3 km/s to reach steady-state conditions)
- Advection time *t*_{max} = duration_max

Step 2: Insert computed pre-shock conditions into shock model input file

The following parameters need to be updated in input_mhd.in:

- File with initial species abundances = path to species.outof preshock model run
- File with initial H₂ levels = path to H2_lev.outof preshock model run
- Attenuation A_V_0 at shock entrance = Total A_V through preshock buffer
- self-shielding N_H2_0 at shock entrance = Total column density of H_2 through preshock buffer
- self-shielding N_CO_0 at shock entrance = Total column density of CO through preshock buffer

When there is no FUV irradiation ($G_0 = 0$), the last three parameters can remain set to zero. Otherwise, they must be read from the last line of the output file mhd_coldens.out written by the pre shock run. This can be done automatically with a shell or Python script.

Step 3: Define the chemistry-independent, "dynamical" shock parameters:

The following input parameters must be specified :

- Name of shock output directory
- Shock speed Vs
- Transverse magnetic field, parametrized as $b = B(\mu G) / \sqrt{n_H / \text{cm}^{-3}}$
- Initial shock type (C or J)
- Number of fluids (3 for C, 1 for J)
- Shock age = timeJ

Step 4: Run the shock model

A whole grid of shock models with same initial preshock conditions can be run simply by repeating Step 3 for different dynamical parameters.

Input files

The code reads several input files that must be located in the input/directory. The main ones to be modified or carefully checked by the user are

- input_mhd.in: specific model parameters (described in Section 3.1).
- "species.in" : list of chemical species with their initial abundances, including grains and PAHs (see Section 3.2)
- "chemistry.in" : list of chemical reactions and their rates, including gas-grain and photo reactions (see Section 3.3)

The other input files provided in the download package contain various atomic, molecular, and grain data (level energies, Einstein A_{ij} coefficients, collisional excitation rates, grain sputtering yields...); they are only meant to be updated whenever newer data become available and should not be modified without expert advice.

3.1 Summary of input parameters in input_mhd.in

The input_mhd.in file contains all necessary input parameters to run the shock code, grouped under several categories:

- file parameters
- shock parameters
- environmental parameters
- grain properties
- excitation and cooling
- numerical parameters
- output specifications
- developer options

The input parameters in each category are described in the following Table.

List of input parameters in the input_mhd.in file

File parameters					
modele	Model name . subdirectory output/modele will be created containing all output files; also added as prefix to the .hdf5 binary output files.				
specfile	Path of file with species list and their initial abundances . Example format given in species.in. Can be the output file species.out created by a previous "initialization" run (types S1, S2, P1 or P2, see below).				
chemfile	Path of file with chemical reactions list. Example format given in chemistry.in.				
h2exfile	File with initial H_2 level populations. Standard value "none" initializes H_2 levels at LTE at temperature = Tn with an ortho to para ratio = op_H2_in (see Shock parameters below). Can be the file H2 lev.outfrom preshock run.				
gridfile	File with FUV radiation field at each point. Only used for self-irradiated shock models (under development). Standard value "none".				

Shock parameters	
shock_type	 Type of model can take the following values C = Continuous C-type shock (with ion-neutral decoupling) J = Jump J-type shock (neutral viscosity term added to dynamical equations) preshock with Sideways irradiation: S1 = isodensity advection at V_c with constant FUV flux
	• S2 = isobaric advection at V_s with constant FUV flux Preshock buffer with upstream irradiation:
	 P1 = isodensity advection at V_s with FUV attenuation along z P2 = isobaric advection at V_s with FUV attenuation along z
Nfluids	Number of fluids can take the following values • 1 (standard for J-shocks) • 2 : neutrals and ions decoupled, but $T_e = T_i$ • 3 (standard for C-shocks) : neutrals and ions decoupled, and $T_e \neq T_i$
Bbeta	Magnetic field parameter $b = B(\mu G) / \sqrt{n_H (\text{cm}^{-3})}$, has a major impact on type of shock (see section [?]). Standard values = 1 for a C-shock and 0.1 for a J-shock.
Vs_km	Shock entrance speed (types C, J) or advection speed (types S1, S2, P1, P2) $(km s^{-1})$
DeltaVmin	Initial ion-neutral drift speed (cm s ^{-1}). Standard = 1.00E03
nH_init	Initial proton density (cm ⁻³) related to gas volumic density through $\rho = 1.4 \times m_H n_H$ (for 10% of Helium by number). V1.1 is only validated up to $n_H \le 10^8$ cm ⁻³ .
Tn	Initial temperature of neutrals (in K). Standard value = 15 K.
op_H2_in	Initial ortho to para ratio of H ₂ . Standard value = 3 (ratio of spin degeneracies).

Environment parameters

Zeta	Cosmic ray ionization rate per H ₂ molecules (s ⁻¹). For a gas with 10% of Helium, it is related to the usual cosmic ray ionisation rate per H nucleus, ζ_{CR} , through Zeta = $\zeta_{CR}/0.54$. Standard value: 5.00E-17. Can be increased to mimic ionization by hard X-rays $\gg 100 \text{ eV}$				
F_ISRF	 Shape of the incident FUV field. This flag can take two values: 1 (Standard): Mathis prescription 2: Draine prescription Photorates in the chemistry in file provided with V1.1 are for a Mathis field. Photorates for a Draine field can be found in Heavs et al. (2017) 				
RAD	Mean intensity G_0 of the FUV field over the interval 910-2066 Å, in Habing units				
Av0	Visual extinction at $z = 0$ (in magnitudes); Typical value is 1.00E-01				
F_COUP_RAD	FUV radiative transfer flag to compute photodissociation and desorption rates				
	0 : No FUV transfer. Photo rates computed from chemfile (in the form $\gamma \exp{-\beta A_v}$)				
	1 : Calculation of FUV field attenuation along z and local photo rates.				
F_AV	A_v integration flag. 0 = A_v constant (sideways irradiation); 1 = A_v integrated along				
	z from upstream.				
F_inAv	A_{ν} to N_{H} conversion flag: 0 = computed from grain distribution; 1 = grain abun-				
	dance scaled to match inv_Av_fac				
inv_Av_fac	A_{ν} to N_H ratio (cm ²) (only if F_inAv = 1). Standard value (galactic ISM) =				
м н2 ∩	Column density of H ₀ buffer (cm^{-2}) providing H ₀ self-shielding				
$N_{0} 0$	Column density of CO buffer (cm ^{-2}) providing CO self-shielding				
vturb	Turbulent velocity (km s ^{-1}) used for H ₂ self-shielding calculations in the FGK for-				
	malism. Typical value: 1-3 km s ^{-1} .				
Grain properties					
Grain properties					

F_TGR

Grain temperature flag. 0 = constant (Standard), 1 = computed at each position.

Tgrains	Initial grain temperature (in K). Standard value = 15 K				
amin_mrn	Grain minimum radius (in cm), excluding PAHs. Typical value: $1.00E-06(0.01\mu m)$.				
amax_mrn	Grain maximum radius (in cm). Typical value: 3.00E-05 (0.3µm).				
alpha_mrn	mrn Index α of power-law grain size distribution, $dn(a)/da \propto a^{-\alpha}$. Standard value =				
	3.5 according to Mathis, Rumpl and Nordsieck, 1977, ApJ, 217, 425.				
rho_grc	grain core bulk density (in $g cm^{-3}$). The number of grains per unit volume of gas is				
	inversely proportional to rho_grc. Standard value = 2 g cm ⁻³ .				
rho_grm	ice mantle bulk density (in g cm ⁻³). Determines the thickness of the ice layer,				
	hence the total grain cross-section for collisions with gas. Standard value = 1 g cm ^{-3} .				

Excitation and cool	ing
ieqth	Gas temperature flag ; 1 (Standard) = solved self-consistently; 0 = fixed (only for 'S' and 'P' type models)
Cool_KN	CO and H ₂ O cooling flag ; 1 (standard) = interpolate in LVG cooling tables from Neufeld & Kaufman (1993); 0 = low-density and optically thin approximation (diffuse medium).
NH2_lev	Number of H ₂ levels whose populations are solved in parallel along the flow. Must be 49 when $H_H2_flag = DRF$. Can be higher when $H_H2_flag = MM$ or BOTH. <i>Make sure to include all H</i> ₂ <i>levels with energies up to the maximum temperature in the shock, as they will contribute to H</i> ₂ <i>collisional dissociation. Standard = 100</i>
NH2_lines_out	Maximum number of H ₂ lines whose emissivities will be written in output files. Standard = 100.
H_H2_flag	 H-H₂ collisional rates; can take 3 values DRF : quantum rates from Flower et al. with prescription for reactive collisions adapted from Schofield MM : semi-classical rates from Martin & Mandy BOTH (Standard): DRF for the first 49 levels and MM above.
iforH2	 H₂ excitation after formation: can take 6 values: -1: formation in the lowest levels v,J =0,0 and 0,1 0: 1/3 of the formation energy (4.4781eV) is distributed among the NH2_lev levels according to a Boltzman distribution 1 (Standard) : proportional to LTE distribution at Tex = 17249 K = 1/3 of 4.4781 eV 2: all into level v=14, J=0,1 at the dissociation limit (4.4781 eV) 3: all into v=6, J=0,1 4: proportional to H₂ relative populations in the gas at current point NB: This parameter can strongly influence the H₂ line intensities in dissociative or irradiated shocks: Verifications are strongly advised.
ikinH2	Kinetic energy carried by reformed H_2 can take 2 values: • 1 : $0.5 \times (4.4781 \text{ eV} - \text{internal})$
pumpH2 NCO_lev	• 2 (Standard): minimum between $1/3 \times 4.4781$ eV and (4.4781 eV - Internal) H ₂ FUV pumping 0 = not treated, 1 = calculated. Number of CO levels included in FGK calculations (obsolete: CO FUV lines are too broad for FGK)

Numerical parameters

Nstep_max	Maximum number of integration steps. Standard = 10000					
timeJ	C-shock age (years). This parameter allows to model young C-shocks of ages smaller than the timescale to recouple the ion and neutral fluids (eg. in protostellar outflows). To approximate the structure of such a young C-shock, the code automat-					
	ically truncates the steady C-type shock at a flow time = timeJ, and switches to a steady J-type viscous front. To compute a steady shock, make sure that timeJ > duration_max. Standard value = 9.999E99					

duration_max	Maximum duration of the model (years) at which calculation stops (if Nstep_max
	not already reached). In a young C-shock, it should be set to 2× timeJ. In a young
	J-shock, it should be set to the true shock age. In other instances, it should be
	sufficiently long to reach the equilibrium postshock temperature and chemistry. For
	initialization runs of type 'S' starting from atomic conditions, it takes typically $3 \times 10^6 \times$
	$(10^4/n_H)$ yrs. For initialization runs of type 'P' (irradiated buffer), the duration should
	be set to $N_H^0/(n_H V_s)$ where N_H^0 is the desired attenuating column of H nuclei through
	this buffer.
eps_V	Precision parameter for DVODE numerical integrator. Standard = 1.00D-07
XLL	Viscous length for n_H = 1 cm ⁻³ (cm). Divided by n_H in the code. Standard =
	1.00E14.

Output specifications

F_W_HDF5_STD	Write hdf5 standard output file (1 = Yes, 0 = No). for Extractor tool.
F_W_HDF5_CHE	Write hdf5 chemical output file (1 = Yes, 0 = No). for Chemistry Analyser tool.
F_W_ASCII	Write ASCII output files (1 = Yes, 0 = No), for usual graphic tools.
Npthdf5	Maximum number of points in hdf5 files. Standard = 10000
Nstep_w	Number of steps between 2 outputs for ASCII and chemical hdf5 files
speci_out	Quantity written in ASCII file mhd_speci.out can take 3 values:
	• AD : absolute number densities at current point $n(X)$ (in cm ⁻³)
	• CD : column densities integrated up to current point $N(X) = \int_0^z n(X) dz$ (in cm ⁻²)
	• FD : fractional abundances at current point $n(X)/n_H$ (dimensionless)
H2_out	Quantity written in ASCII file H2_lev.out can take 3 values:
	• AD : local number density in each H ₂ level, $n(v, J)(z)$ (in cm ⁻³)
	• CD : column densities integrated up to current point, $N(v, J) = \int_0^z n(v, J) dz$ (in cm ⁻²)
	• $\ln(N/g)$: list of $\ln(N(v, J))/g_{v,J}$ (dimensionless) where $g_{v,J} = 2J + 1$ is the level statis-
	tical weight; allows to plot Boltzman excitation diagrams of H_2 at each z to monitor
	changes in excitation and ortho/para.
line_out	Quantity written in ASCII file H2_line.out can take 2 values:
	• 'local' : local emissivity in each H_2 line (in erg s ⁻¹ cm ⁻³)
	• 'integrated' : flux integrated up to current point in each H ₂ line (in erg s ⁻¹ cm ⁻² sr ⁻¹)
flag_analysis	Chemical analysis (Y = Yes, N = No). Output list of dominant reactions at each z
	(obsolete).
Developer options	
F SORT	Sort chemical reactions before computing derivatives $(1 = \text{Yes}, 0 = \text{No})$
F CONS	Enforce elemental and charge conservation $(1 = Yes, 0 = No)$
F CH	compute CH velocity instead of adopting the neutral fluid velocity (1 = Yes. 0 = No)
F S	compute S velocity instead of adopting the neutral fluid velocity (1 = Yes, 0 = No)
F SH	compute SH velocity instead of adopting the neutral fluid velocity (1 = Yes, 0 = No)
_ z_0	flow divergence scale under development

3.2 The chemical species file "species.in"

The chemical evolution through any shock model will strongly depend on the chosen initial chemical composition. Hence this initialization is a major point to pay attention to.

The list of chemical species to be considered, and their initial abundances at z = 0, is read from a

specifically formatted "species file" located in directory input/. In V1.0 and V0, this file had to be named species.in. Starting from V1.1, the filename and its path can be freely specified by the user through the parameter specfile in info_mhd.in; However, to help recognize these files, it is strongly recommended to keep names of the type species.in_X where X describes the specifics.

An example of "species file" and its format is given in Appendix D. It contains one line per species, which must contain:

- index (not used anymore by the code)
- · species name with a maximum of 8 characters
- 14 digit number (not used anymore by the code)
- fractional abundance relative to the total number of **protons**, $n_H = n(H) + 2n(H_2) + n(H^+)$
- enthalpy of formation in kcal mol^{-1} (1/4.1 of the value in kJ mol^{-1})
- a comment (optional)

NB: Since the format is so critical, it is strongly advised to save the standard species.in given in the code package under a different name, e.g. species.in.sav, before any editing.

Three kind of species names are recognized:

- gas-phase species: denoted by their usual symbol and followed by + or if charged (eg. HCO+)
- neutral species on ice mantles: symbol followed by a * (eg. SiO*)

- neutral atoms in grain cores: symbol followed by a ** (e.g. Mg * *)

The species name is automatically interpreted by the code and assigned the corresponding mass. Currently, the code can handle species made of the following elements: H, D, He, C, N, O, Na, Mg, Si, S, Fe. Only single-ionization stages are supported.

An additional generic "grain species" G is also defined, that can be positively or negatively charged. It enters in the chemistry through reactions of charge transfer with gas species. The code verifies that the total number of grains, n(G)+n(G+)+n(G-) in the "species.in" file is consistent with the total mass of ** species in grain cores, for the grain size distribution and the bulk grain density specified in input_mhd.in. Otherwise, a warning is issued on screen asking to run a pre shock model (types 'S' or 'P'), where the abundance of G will be properly initialised.

Several important points must be checked about the "species file" before running a model:

- The total elemental abundances summed over all species, and the gas/grain mass ratio: they are computed by the code at the start of the computation and written in the ascii output file info_mhd.out, where they can be consulted to make sure they agree with the desired values (eg. solar abundances).

- the distribution of elemental abundances among gas, PAHs, grain cores, and icy grain mantles: the depletion onto grains affects the shock predictions in that it determines the gas-phase abundance of the most important coolants (CO, H₂O, O) and the total mass in grains (which controls the inertia of the charged fluid and the C-shock structure). Table 3.2 gives the standard distribution adopted in [32] for dark cloud conditions and a PAH abundance of 10^{-6} . However, these numbers should of course be adjusted depending on the specific environment considered.

- the assumed composition of ice mantles. This will determine the line intensity of shock tracers that are mainly sputtered off grain mantles rather than formed in the gas phase (eg. CH_3OH ,

element	elemental	in gas	in PAHs	in ice	in grain
	abundance	phase	$(C_{54}H_{18})$	mantles	cores
Н	1	1			
He	0.1	0.1			
С	3.55×10^{-4}	8.27×10 ⁻⁵	$5.4 imes 10^{-5}$	5.53×10^{-5}	1.63×10^{-4}
N	7.94×10 ⁻⁵	6.39×10^{-5}		1.55×10 ⁻⁵	
0	4.42×10^{-4}	1.24×10^{-4}		1.78×10^{-4}	1.40×10^{-4}
Mg	3.70×10^{-5}				3.70×10^{-5}
Si	3.37×10^{-5}				3.37×10^{-5}
S	1.86×10 ⁻⁵	1.47×10^{-5}		3.93×10^{-6}	
Fe	3.23×10^{-5}	1.50×10 ⁻⁸			3.23×10 ⁻⁵

Table 3.2: Standard initial distribution of elemental fractional abundances among gas-phase species, PAHs, icy grain mantles, and grain cores, as adopted by [32]. The fractional abundance of PAH molecules ($C_{54}H_{18}$) is 10^{-6} per H nucleus. Silicates are assumed to be olivine (SiO₄[Fe,Mg]₂). The mass in grain cores is 0.6% of that of the gas, divided up between silicate grains (70% of the grain mass, 57% by number), and carbonaceous ones (30% of the grain mass, 43% by number).

CO*	CO ₂ *	CH_4^*	NH ₃ *	H ₂ O*
8.3×10 ⁻⁶	1.3×10 ⁻⁵	1.6×10 ⁻⁶	1.6 ×10 ⁻⁵	1.0×10^{-4}
8.3%	13%	1.6%	16%	100%
CH ₃ OH*	H ₂ CO*	HCOOH *	OCS*	H_2S^*
1.9×10^{-5}	6.2×10^{-6}	7.2×10^{-6}	2.1×10^{-7}	3.7×10^{-6}
19%	6.2%	7.2%	0.21%	3.7%

Table 3.3: Example of initial species abundances in ice mantles relative to hydrogen nuclei in the gas (first line), and relative to water ice (second line, expressed in %), estimated by [32] from absorption observations in Gibb et al. (2000). The resulting total mass in ice mantles is 0.3% that of the gas. Detailed modeling of the L1157-B1 protostellar shock favors 6-10 times smaller abundances of CH_3OH^* and NH_3^* than given here[55].

 NH_3 , OCS, H_2S ...). Table 3.3 gives the standard ice abundances adopted in [32] for dark cloud conditions, based on observations of W3OH by Gibb et al. (2000).

However, the ice composition in the cold ISM is still very uncertain. For example, modeling the full set of *Herschel* observations of the B1 shock in the L1157 protostellar outflow with the Paris-Durham shock code suggests that CH_3OH and NH_3 ices are 6-10 times less abundant in that region than assumed in Table 3.3.

Fortunately, most ice species (except for H_2O and CH_3OH) are not major shock coolants and are not strongly reactive; hence their assumed ice abundance does not impact the shock structure, and they can be scaled a posteriori to match observations.

3.3 The chemical network file "chemistry.in"

The chemical reaction rates are read from a specifically formatted file located in directory input/. The file name is user-specified through the parameter chemfile in info_mhd.in. The standard name is chemistry.in. The V1.1 download package provides two examples of chemistry files:

- chemistry.in_standard: with a standard network of 1300 reactions (adapted to the standard species.in file provided with the same package).

- chemistry.in_noadso, which is the same network but without adsorption reactions onto grains.

The latter file should be used whenever one wishes to impose the initial abundances in ice mantles, for example to match those in Table 3.3.

Adsorption reactions should also be removed for computing the pre-shock composition ('S' or 'P' models) when photodesorption is so weak that most species would deplete on grain mantles and disappear from the gas phase before the end of the calculation. According to Equs. A.17 and A.18 in [51], photodesorption will no longer compete with adsorption when $G_0 \le 0.01 \times (n_H/10^4 \text{ cm}^{-3})$.

The chemical network file uses a specific tabular format, which looks as follows:

					gamma	alpha	beta		
16B83	0	H2	OH	Н	1.55D-13	2.80	2980.0	0	!
UMIST	CO	Н	OH	С	1.10D-10	0.50	77700.0	0	!
72 83	02	Н	OH	0	1.63D-09	90	8750.0	0	!

Each line corresponds to one reaction, where:

- the first 5 characters are a code (reference, database, family of reactions..)
- the next 2 columns are the reactant names, followed by the products (up to 4 columns).
- the following three floats, called respectively γ , α and β , parametrize the reaction rate.
- the integer after the 3 floats is a flag to identify the reaction type, and how γ , α and β are used by the code to compute chemical reaction rates
- the text after ! is a free comment

In the example above, the reaction type is 0, corresponding to gas phase reactions. in that case, γ , α and β are taken to be Arrhenius coefficients. and each reaction rate coefficient will be computed as:

$$k = \gamma \left(\frac{T}{300}\right)^{\alpha} e^{-\beta/T} \quad \text{cm}^3 \text{ s}^{-1}.$$

Most of the gas-phase reaction rate coefficients in the current network can be computed using such an Arrhenius form; However, several important types of reactions need specific parametrizations; These special cases are generally signaled by reactants and/or products that do not correspond to existing species:

- CRP : ionization or dissociation by impact of secondary electrons resulting from cosmic rays

- SECPHO: dissociation or ionization by H_2 UV fluorescence resulting from cosmic rays (excitation of H_2 by secondary electron impacts).

- PHOTON (reactant) : dissociation or ionization by attenuated external FUV field
- GRAIN (reactant): adsorption onto grains
- GRAIN (product): sputtering of ices, erosion of grain cores, photodesorption
- VOISIN: thermal evaporation from ice mantle [51]

The exo / endothermicity ΔE of gas-phase reactions are computed from the enthalpy difference between the reactants and the products (the enthalpy of formation of each species is read from file species.in). Reverse reactions are added whenever their endothermicity is less than 2 eV. Their

rate is then taken equal to the forward rate but with an exponential term $exp^{-\Delta E/kT}$.

Because of the complexity of such a network, and the necessity to check for internal consistency and "closure" reactions, it is not advised to modify the chemistry in files without advice from an expert of the code.

Output files

Starting with V1.1, two (non mutually exclusive) options are offered for the output data format of the Shock Code: namely, a series of ASCII files in tabular format (see Section 4.1), or two single files in hdf5 binary format allowing the use of interactive analysis tools and VO-compliant interfaces (see Section 4.2).

4.1 ASCII output files

With $F_W_ASCII = 1$ in species.in the code creates a series of ASCII files with computed quantities. Their content is arranged in tabulated data columns, that can be read by usual file editors and plotted by classical graphic softwares (eg. gnuplot, etc...). While the output subdirectory name changes according to the parameter modele, the ASCII filenames are always the same, allowing to use predefined graphic scripts. The list of output ASCII files and their content is summarized in the Table below.

Information files	
info_mhd.out	Summary of model (text file) : List all input model parameters, initial abundances, and chemical reactions used for the run. Also provides the total elemental abundances summed over gas-phase, grain cores, and ice mantles (to check against solar abundances), and the gas / grain ratio.
species.out	Abundances at last computed point , $n(X)/nH$. NB: After running initialization models of type 'S' or 'P', this file must be used as species.in for the subsequent shock run (type 'C' or 'J').
excit.out	predicted H ₂ excitation diagram contains 3 columns: level number, level energy $E(v, J)$, and $\ln(N(v, J)/g_{v,J})$ where $N(v, J)$ is integrated from $z = 0$ to the last computed point.
Physical and chemical stru	ucture of the shock (one line per z)
mhd_phys.out	Physical variables as a function of <i>z</i> , such as density, temperature, velocity of each fluid, magnetic field, grain size and mass
mhd_speci.out	Chemical abundances. Content depends on parameter speci_out in in- put_mhd.in: • AD : absolute number densities at current point $n(X)$ (in cm ⁻³) • CD : column densities integrated up to current point $N(X) = \int_0^z n(X) dz$ (in cm ⁻²) • ED : fractional abundances at current point $n(X)/n_X$ (Standard)
mhd_coldens.out	Column densities of each species, integrated up to current point $N(X) = \int_0^z n(X) dz$ (in cm ⁻²)
H_2 excitation and cooling ((one line per z)
H2_lev.out	 H₂ level populations. content depends on parameter H2_out in input_mhd.in: AD : local number density in each H₂ level, n(v, J)(z) (in cm⁻³)

List of main output ASCII files and their content

H2_line.out	• $\ln(N/g)$: list of $\ln(N(v, J)/g_{v,J})$ (dimensionless) where $g_{v,J} = 2J + 1$ is the level statistical weight (useful to plot excitation diagrams of H ₂ at each <i>z</i> to monitor changes in excitation). H ₂ line intensities. content depends on parameter line_out in input_mhd.in: • 'local' : local emissivity in each H ₂ line (in erg s ⁻¹ cm ⁻³) • 'integrated' : flux integrated up to current point in each H ₂ line (in erg s ⁻¹ cm ⁻²)
Emissivities and cooling (or	ne line per z)
intensity.out	Flux of main atomic / ionic lines integrated up to current point (erg/s/cm ² /sr)
populations.out	Local level populations of main atoms / ions
fe_lines.out	Flux of Fe+ lines integrated up to current point (erg/s/cm ² /sr)
fe_pops.out	Local level populations of Fe+
thermal_balance.out	Cooling and heating rates (erg/s/cm ³) total and split by fluid, process, species.

4.2 hdrf5 output files

The hdf5 files are much larger than the ASCII output files, as they include many more computed quantities. But they allow for interactive analysis tools with a user-friendly graphical interface, and exportation into VO-compliant databases (eg. IMSDB). They are also recommended for beginners who wish to browse through all available output variables, and check their definitions and units.

- The binary file modele_s.hdf5 (written when F_W_HDF5_STD =1 in input_mhd.in), contains all of the "standard" data computed at each position. The **Extractor tool** in AnalysisTools/ allows to identify, select, and plot interactively any physical quantities, and export them to an ASCII file or a VO-Table. A script mode allows extraction from a large number of models. A detailed documentation is available in Doc_Extractor.pdf in AnalysisTools/.

- The binary file modele_c.hdf5 (written when F_W_HDF5_CHE =1 in input_mhd.in), contains all of the "chemical" information (abundances, local reaction rates,...) at each position. This file is read by the **Chemistry_analyzer** tool, provided in AnalysisTools/; an interactive graphical user interface presents the main formation and destruction mechanisms of any chosen species, and all information necessary to analyse the chemical state. Chemical rates can be exported to ASCII files or VO-Tables. A detailed documentation is available in Doc_ChemistryAnalyzer.pdf in AnalysisTools/.

A non-exhaustive bibliography

This section provides the interested reader with a set of recommended-reading papers, whose variety spans from general knowledge about shock theory to publications specifically based on the use of the shock code described here.

5.1 Basic ISM shock theory

This first section lists the historical articles that deal with the theoretical modelling of the propagation of a shock wave in the dusty ISM, through its most prominent aspects. Note that this list is far from exhaustive, and only covers refereed publications :

Fast dissociative "jump" (J-type) molecular shocks

- [1] Hollenbach, D., & McKee, C. F., 1980, ApJ, 241, L47
 Molecule formation and infrared emission in fast interstellar shocks
 I Physical processes
- [2] *McKee, C. F., & Hollenbach, D. J., 1980, ARA&A, 18, 219* Interstellar shock waves
- [3] *Hollenbach, D., & McKee, C. F., 1980, ApJ, 241, 47* Molecule formation and infrared emission in fast interstellar shocks II - Dissociation speeds for interstellar shock waves
- [6] *Draine, B. T., 1981, ApJ, 245, 880* Infrared emission from dust in shocked gas
- [4] *Hollenbach, D., & McKee, C. F., 1989, ApJ, 342, 306* Molecule formation and infrared emission in fast interstellar shocks III - Results for J shocks in molecular clouds
- [8] *Neufeld, D. A., & Dalgarno, A., 1989, ApJ, 340, 869* Fast molecular shocks. I - Reformation of molecules behind a dissociative shock
- [9] *Neufeld, D. A., & Dalgarno, A., 1989, ApJ, 344, 251* Fast molecular shocks. II - Emission from fast dissociative shocks

"Continuous" (C-type) shocks with magnetic precursor

- [5] *Draine, B. T., 1980, ApJ, 241, 1021* Interstellar shock waves with magnetic precursors
- [7] *Draine, B. T., Roberge, W. G., & Dalgarno, A., 1983, ApJ, 264, 485* Magnetohydrodynamic shock waves in molecular clouds
- [11] *Kaufman, M. J., & Neufeld, D. A., 1996, ApJ, 456, 611* Far-infrared water emission from magnetohydrodynamic shock waves

Young C-shocks: Numerical MHD simulations with coupled chemistry

- [63] *Chièze, J.-P., Pineau des Forêts, G., & Flower, D. R., 1998, MNRAS, 295, 672* Temporal evolution of MHD shocks in the interstellar medium
- [64] *Lesaffre, P., Chièze, J.-P., Cabrit, S., & Pineau des Forêts, G., 2004, A&A, 427, 147* Temporal evolution of magnetic molecular shocks I - Moving grid simulations
- [65] Lesaffre, P., Chièze, J.-P., Cabrit, S., & Pineau des Forêts, G., 2004, A&A, 427, 157 Temporal evolution of magnetic molecular shocks
 - II Analytics of the steady state and semi-analytical construction of intermediate ages

5.2 First series of papers on the Paris-Durham shock code

This section contains the full list of early papers in which the two main contributors to the shock code describe the physical and chemical processes taken into account from the beginning of the code development. They are initially focussed on applications to the diffuse ISM, and then extended to denser clouds.

- [12] Flower, D. R., Pineau des Forêts, G., & Hartquist, T. W., 1985, MNRAS, 216, 775 Theoretical studies of interstellar molecular shocks
- I General formulation and effects of the ion-molecule chemistry

 [13] Flower, D. R., Pineau des Forêts, G., & Hartquist, T. W., 1986, MNRAS, 218, 729
- Theoretical studies of interstellar molecular shocks
- II Molecular hydrogen cooling and rotational level populations
- [14] Pineau des Forêts, G., Flower, D. R., Hartquist, T. W., & Dalgarno, A., 1986, MNRAS, 220, 801

Theoretical studies of interstellar molecular shocks

- III The formation of CH+ in diffuse clouds
- [15] Pineau des Forêts, G., Roueff, E., & Flower, D.R., 1986, MNRAS, 223, 743 Theoretical studies of interstellar molecular shocks
- IV The sulphur chemistry in diffuse clouds
- [16] *Flower, D. R., & Pineau des Forêts, G., 1987, MNRAS, 224, 403* Theoretical studies of interstellar molecular shocks
 - V Solutions for J-type shocks as an initial value problem
- [17] Pineau des Forêts, G., Flower, D. R., Hartquist, T. W., & Millar, T. J., 1987, MNRAS, 227, 993

Theoretical studies of interstellar molecular shocks

- VI The formation of molecules containing two or three carbon atoms
- [18] Monteiro, T. S., Flower, D. R., Pineau des Forêts, G., & Roueff, E., 1988, MNRAS, 234, 863
 - Theoretical studies of interstellar molecular shocks VII The photodissociation of molecular hydrogen
- [19] *Pineau des Forêts, G., Flower, D.R., & Dalgarno, A., 1988, MNRAS, 235, 621* Theoretical studies of interstellar molecular shocks VIII - Polycyclic aromatic hydrocarbons in dark clouds
- [20] Flower, D. R., Heck, L., & Pineau des Forêts, G., 1989, MNRAS, 239, 741 Theoretical studies of interstellar molecular shocks
 IX - The influence of PAH molecules on the ratio C/CO in dark clouds

- [21] *Pineau des Forêts, G., Roueff, E., & Flower, D. R., 1989, MNRAS, 240, 167* Theoretical studies of interstellar molecular shocks
 - X The chemical fractionation of deuterium in dark clouds
- [22] Heck, L., Flower, D. R., & Pineau des Forêts, 1990, Computer Physics communications, 58, 169

A computer program for calculating the structure of magnetohydrodynamical shocks in interstellar clouds

5.3 Updates of the Paris-Durham shock code

Through the years, the code was developed to account for different kinds of observations, mostly spreading from the infrared (IR) to the sub-millimeter/millimeter ranges. To this aim, several focused updates were implemented in the shock code, and were the subject of various publications, that are here divided up in the following themes: grains and SiO, chemistry, H_2 , and FUV irradiation. Again, the list given is not supposed to be exhaustive.

Grains and SiO

- [23] *Flower, D. R., Heck, L., Pineau des Forêts, G., & Millar, T. J., 1990, MNRAS, 242, 512* The erosion of PAH molecules within shocks in dark clouds
- [24] *Flower, D. R., & Pineau des Forêts, G., 1994, MNRAS, 268, 724* Grain/Mantle erosion in Magnetohydrodynamic shocks
- [25] Flower, D. R., Pineau des Forêts, G., & Walmsley, C. M., 1995, A&A, 294, 815 Hot shocked ammonia towards Sgr B2
- [26] *Flower, D. R., & Pineau des Forêts, 1995, MNRAS, 275, 1049* Non-thermal sputtering of interstellar grains in magnetohydrodynamic shocks
- [27] *Flower, D. R., Pineau des Forêts, G., Field, D., & May, P. W., 1996, MNRAS, 280, 447* The structure of MHD shocks in molecular outflows: grain sputtering and SiO formation
- [28] Field, D., May, P. W., Pineau des Forêts, G., & Flower, D. R., 1997, MNRAS, 285, 839 Sputtering of the refractory cores of interstellar grains
- [29] Schilke, P., Walmsley, C. M., Pineau des Forêts, G., & Flower, D. R., 1997, A&A, 321, 293
 - SiO production in interstellar shocks
- [30] May, P. W., Pineau des Forêts, G., Flower, D. R., et al., 2000, MNRAS, 318, 809 Sputtering of grains in C-type shocks
- [31] Le Picard, S. D., Canosa, A., Pineau des Forêts, G., Rebrion-Rowe, C., & Rowe, B. R., 2001, A&A, 372, 1064

The Si(${}^{3}P_{J}$) + O₂ reaction: a fast source of SiO at very low temperature; CRESU measurements and interstellar consequences

- [32] *Flower, D. R., & Pineau des Forêts, G., 2003, MNRAS, 343, 390* The influence of grains in the propagation and the structure of C-type shock waves in interstellar molecular clouds
- [33] *Gusdorf, A., Cabrit, S., Flower, D. R., & Pineau des Forêts, G., 2008, A&A, 482, 809* SiO line emission from C-type shock waves: interstellar jets and outflows
- [34] *Gusdorf, A., Pineau des Forêts, G., Cabrit, S., & Flower, D. R., 2008, A&A, 490, 695* SiO line emission from interstellar jets and outflows: silicon-containing mantles and nonstationary shock waves

Warm gas chemistry

- [35] *Pineau des Forêts, G., Roueff, E., & Flower, D. R., 1990, MNRAS, 244, 668* The formation of nitrogen-bearing species in dark interstellar clouds
- [36] Pineau des Forêts, G., Roueff, E. L., Schilke, P., & Flower, D. R., 1993, MNRAS, 262, 915

Sulphur-bearing molecules as tracers of shocks in interstellar clouds

- [37] *Roueff, E., Pineau des Forêts, G., & Flower, D. R., 1995, ApJSS, 233, 125* The importance of chemical data for the study of interstellar shocks
- [38] *Flower, D. R., & Pineau des Forêts, G., 1998, MNRAS, 297, 1182* C-type shocks in the interstellar medium: profiles of CH⁺ and CH absorption lines

Molecular hydrogen

- [40] *Le Bourlot, J., Pineau des Forêts, G., & Flower, D. R., 1999, MNRAS, 305, 802* The cooling of astrophysical media by H₂
- [41] Flower, D. R. & Pineau des Forêts, G., 1999, MNRAS, 308, 271
 H₂ emission from shocks in molecular outflows: the significance of departures from a stationary state
- [42] *Wilgenbus, D., Cabrit, S., Pineau des Forêts, G., & Flower, D. R., 2000, A&A, 356, 1010* The ortho:para-H₂ ratio in C- and J-type shocks
- [43] Flower, D. R., Le Bourlot, J., Pineau des Forêts, G., & Roueff, E., 2000, MNRAS, 314, 753

The cooling of astrophysical media by HD

- [45] *Pineau des Forêts, G., & Flower, D. R., 2001, MNRAS, 323, 7* Collisional excitation of H₂ by grains in C-type shocks
- [46] Le Bourlot, J., Pineau des Forêts, G., Flower, D. R., & Cabrit, S., 2002, MNRAS, 332, 985

New determinations of the critical velocities of C-type shock waves in dense molecular clouds: applications to the outflow source in Orion

• [47] Flower, D. R., Le Bourlot, J., Pineau des Forêts, G., & Cabrit, S., 2003, MNRAS, 341, 70

The contributions of J-type shocks to the H₂ emission from molecular outflow sources

• [49] Wrathmall, S. A., Gusdorf, A., & Flower, D. R., 2007, MNRAS, 382, 133

The excitation of molecular hydrogen by atomic hydrogen in astrophysical media

Externally irradiated shocks

• [50] Lesaffre, P., Pineau des Forêts, G., Godard, B., Guillard, P., Boulanger, F., & Falgarone, E. 2013, A&A 550, A106

Low-velocity shocks: signatures of turbulent dissipation in diffuse irradiated gas

• [51] Godard, B., Pineau des Forêts, G., Lesaffre, P., Lehmann, A. & Falgarone, E. 2019, A&A 622, A100

Models of irradiated molecular shocks

5.4 Spinoffs

This section lists further developments directly based upon the Paris-Durham shock model but not (yet) included in the current on-line versions.

Time-dependent LVG excitation and emission of optically thick molecules

- [52] *Flower, D. R., & Gusdorf, A., 2009, MNRAS, 395, 234* Emission and cooling by CO in interstellar shock waves
- [53] *Flower, D. R., & Pineau des Forêts, G., 2010, MNRAS, 406, 1745* Excitation and emission of H₂, CO and H₂O molecules in interstellar shock waves
- [54] *Flower, D. R., Pineau des Forêts, G., & Rabli, D., 2010, MNRAS, 409, 29* Methanol line formation in outflow sources
- [55] *Flower, D. R., & Pineau des Forêts, G., 2012, MNRAS, 421, 2786* Time-dependent modelling of the molecular line emission from shock waves in outflow sources (with introduction of NH₃ chemistry and excitation)
- [56] Flower, D. R., & Pineau des Forêts, G., 2013, MNRAS, 436, 2143
 Characterizing shock waves in molecular outflow sources: the interpretation of Herschel and Spitzer observations of NGC 1333 IRAS 4B (with introduction of OH excitation)

Pseudo-multidimensional modelling

- [57] *Gustafsson, M., Ravkilde, T., Kristensen, L. E., et al., 2010, A&A, 513, 5* 3D model of bow shocks
- [58] *Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T. 2018 MNRAS 473, 1472* H₂ emission from non-stationary magnetized bow shocks

Grain-grain shattering and feedback on shock structure

- [59] Guillet, V., Pineau des Forêts, G., & Jones, A. P., 2007, A&A, 476, 263
 Shocks in dense clouds
 I Dust dynamics
- [60] *Guillet, V., Jones, A. P., & Pineau des Forêts, G., 2009, A&A, 497, 145* Shocks in dense clouds
 - II Dust destruction and SiO formation in J shocks
- [61] Guillet, V., Pineau des Forêts, & G., Jones, A. P., 2011, A&A, 527, 123 Shocks in dense clouds
 III - Dust processing and feedback effects in C-type shocks
- [62] Anderl, S.; Guillet, V.; Pineau des Forêts, G.; Flower, D. R. 2013, A&A 556, A69 Shocks in dense clouds.
 IV. Effects of grain-grain processing on molecular line emission

5.5 A selection of observational applications of the Paris-Durham shock code

Galactic

• [39] Verstraete, L., Falgarone, E., Pineau des Forêts, G., Flower, D. R., & Puget, J.-L., 1999, ESASP, 427, 779

Hot chemistry in the diffuse medium: spectral signature in the H₂ rotational lines

• [44] Wilgenbus, D., Cabrit, S., Pineau des Forêts, G., & Flower, D. R., 2001, ASPC, 243, 347

Characteristics of shocks in bipolar outflows observed in pure rotational lines of $\ensuremath{\mathsf{H}}_2$ with ISO-CAM

- [48] Cabrit, S., Flower, D. R., Pineau des Forêts, G., Le Bourlot, J., & Ceccarelli, C., 2004, ApSS, 292, 501
 - H₂ diagnostics of magnetic molecular shocks in bipolar outflows
- [66] *McCoey, C., Giannini, T., Flower, D. R., & Caratti o Garatti, A., 2004, MNRAS, 353, 813* On the excitation of the infrared knot in the HH99 outflow
- [67] *Giannini, T., McCoey, C., Caratti o Garatti, A., Net al., 2004, A&A, 419, 999* On the excitation of the infrared knots along protostellar jets
- [68] *Giannini, T., McCoey, C., Nisini, B., et al., 2006, A&A, 459, 821* Molecular line emission in HH54: a coherent view from near to far infrared
- [69] *Cabrit, S., Codella, C., Gueth, F., et al., A&A, 2007, 468, 29* PdBI sub-arcsecond study of the SiO microjet in HH212. Origin and collimation of class 0 jets
- [70] *Kristensen, L. E., Ravkilde, T. L., Pineau des Forêts, G., et al., 2008, A&A, 477, 203* Observational 2D model of H2 emission from a bow shock in the Orion Molecular Cloud
- [71] Dionatos, O., Nisini, B., Cabrit, S., Kristensen, L. E., & Pineau des Forêts, G., 2010, A&A, 521, 7
 - Spitzer spectral line mapping of the HH211 outflow
- [72] *Gusdorf, A., Giannini, T., Flower, D. R., et al., 2011, A&A, 523, 53* Revisiting the shocks in BHR71: new observational constraints and predictions for *Herschel*
- [74] *Gusdorf, A., Anderl, S., Güsten, R., et al., 2012, A&A, 542, 19* Probing magnetohydrodynamic shocks with high-J CO observations: W28F
- [75] Gusdorf, A.; Güsten, R.; Menten, K. M.; Flower, D. R.; Pineau des Forêts, G.; et al., 2016, A&A 585, A45

Challenging shock models with SOFIA OH observations in the high-mass star-forming region Cepheus A

• [76] Neufeld, D.A., DeWitt, C., Lesaffre, P., Cabrit, S., Gusdorf, A., Le Ngoc, T., Richter, M. 2019, ApJ 878, L18

SOFIA/EXES observations of warm H2 at high spectral resolution: witnessing para-to-ortho conversion behind a molecular shock wave in HH7

Extra-Galactic

• [77] Guillard, P., Boulanger, F., Pineau des Forêts, G., & Appleton, P. N., 2009, A&A, 502, 515

H₂ formation and excitation in the Stephan's Quintet galaxy-wide collision

- [78] *Guillard, P., Ogle, P. M., Emonts, B. H. C., et al., 2012, ApJ, 747, 95* Strong molecular hydrogen emission and kinematics of the multiphase gas in radio galaxies with fast jet-driven outflows
- [79] *Guillard, P., Boulanger, F., Pineau des Forêts, G., et al., 2012, ApJ, 749, 158* Turbulent molecular gas and star formation in the shocked intergalactic medium of Stephan's quintet
- [80] *Hailey-Dunsheath, S., Sturm, E., Fischer, J., et al., 2012, ApJ, 755, 57* Turbulent molecular gas and star formation in the shocked intergalactic medium of Stephan's quintet
- [81] *Meijerink, R., Kristensen, L. E., Weiss, A., et al., 2013, ApJ, 762, 16* Evidence for CO Shock Excitation in NGC 6240 from Herschel SPIRE Spectroscopy

Bibliography

- [1] Hollenbach, D., & McKee, C. F., 1980, ApJ, 241, L47
- [2] McKee, C. F., & Hollenbach, D. J., 1980, ARA&A, 18, 219
- [3] Hollenbach, D., & McKee, C. F., 1980, ApJ, 241, 47
- [4] Hollenbach, D., & McKee, C. F., 1989, ApJ, 342, 306
- [5] Draine, B. T., 1980, ApJ, 241, 1021
- [6] Draine, B. T., 1981, ApJ, 245, 880
- [7] Draine, B. T., Roberge, W. G., & Dalgarno, A., 1983, ApJ, 264, 485
- [8] Neufeld, D. A., & Dalgarno, A., 1989, ApJ, 340, 869
- [9] Neufeld, D. A., & Dalgarno, A., 1989, ApJ, 344, 251
- [10] Neufeld, D. A., & Kaufman, M. J., 1993, ApJ, 418, 263
- [11] Kaufman, M. J., & Neufeld, D. A., 1996, ApJ, 456, 611
- [12] Flower, D. R., Pineau des Forêts, G., & Hartquist, T. W., 1985, MNRAS, 216, 775
- [13] Flower, D. R., Pineau des Forêts, G., & Hartquist, T. W., 1986, MNRAS, 218, 729
- [14] Pineau des Forêts, G., Flower, D. R., Hartquist, T. W., & Dalgarno, A., 1986, MNRAS, 220, 801
- [15] Pineau des Forêts, G., Roueff, E., & Flower, D.R., 1986, MNRAS, 223, 743
- [16] Flower, D. R., & Pineau des Forêts, G., 1987, MNRAS, 224, 403
- [17] Pineau des Forêts, G., Flower, D. R., Hartquist, T. W., & Millar, T. J., 1987, MNRAS, 227, 993
- [18] Monteiro, T. S., Flower, D. R., Pineau des Forêts, G., & Roueff, E., 1988, MNRAS, 234, 863
- [19] Pineau des Forêts, G., Flower, D.R., & Dalgarno, A., 1988, MNRAS, 235, 621
- [20] Flower, D. R., Heck, L., & Pineau des Forêts, G., 1989, MNRAS, 239, 741
- [21] Pineau des Forêts, G., Roueff, E., & Flower, D. R., 1989, MNRAS, 240, 167
- [22] Heck, L., Flower, D. R., & Pineau des Forêts, 1990, Computer Physics communications, 58, 16
- [23] Flower, D. R., Heck, L., Pineau des Forêts, G., & Millar, T. J., 1990, MNRAS, 242, 512
- [24] Flower, D. R., & Pineau des Forêts, G., 1994, MNRAS, 268, 724
- [25] Flower, D. R., Pineau des Forêts, G., & Walmsley, C. M., 1995, A&A, 294, 815
- [26] Flower, D. R., & Pineau des Forêts, 1995, MNRAS, 275, 1049
- [27] Flower, D. R., Pineau des Forêts, G., Field, D., & May, P. W., 1996, MNRAS, 280, 447
- [28] Field, D., May, P. W., Pineau des Forêts, G., & Flower, D. R., 1997, MNRAS, 285, 839
- [29] Schilke, P., Walmsley, C. M., Pineau des Forêts, G., & Flower, D. R., 1997, A&A, 321, 293

- [30] May, P. W., Pineau des Forêts, G., Flower, D. R., et al., 2000, MNRAS, 318, 809
- [31] Le Picard, S. D., Canosa, A., Pineau des Forêts, G., Rebrion-Rowe, C., & Rowe, B. R., 2001, A&A, 372, 1064
- [32] Flower, D. R., & Pineau des Forêts, G., 2003, MNRAS, 343, 390
- [33] Gusdorf, A., Cabrit, S., Flower, D. R., & Pineau des Forêts, G., 2008, A&A, 482, 809
- [34] Gusdorf, A., Pineau des Forêts, G., Cabrit, S., & Flower, D. R., 2008, A&A, 490, 695
- [35] Pineau des Forêts, G., Roueff, E., & Flower, D. R., 1990, MNRAS, 244, 668
- [36] Pineau des Forêts, G., Roueff, E. L., Schilke, P., & Flower, D. R., 1993, MNRAS, 262, 915
- [37] Roueff, E., Pineau des Forêts, G., & Flower, D. R., 1995, ApJSS, 233, 125
- [38] Flower, D. R., & Pineau des Forêts, G., 1998, MNRAS, 297, 1182
- [39] Verstraete, L., Falgarone, E., Pineau des Forêts, G., Flower, D. R., & Puget, J.-L., 1999, ESASP, 427, 779
- [40] Le Bourlot, J., Pineau des Forêts, G., & Flower, D. R., 1999, MNRAS, 305, 802
- [41] Flower, D. R. & Pineau des Forêts, G., 1999, MNRAS, 308, 271
- [42] Wilgenbus, D., Cabrit, S., Pineau des Forêts, G., & Flower, D. R., 2000, A&A, 356, 1010
- [43] Flower, D. R., Le Bourlot, J., Pineau des Forêts, G., & Roueff, E., 2000, MNRAS, 314, 753
- [44] Wilgenbus, D., Cabrit, S., Pineau des Forêts, G., & Flower, D. R., 2001, ASPC, 243, 347
- [45] Pineau des Forêts, G., & Flower, D. R., 2001, MNRAS, 323, 7
- [46] Le Bourlot, J., Pineau des Forêts, G., Flower, D. R., & Cabrit, S., 2002, MNRAS, 332, 985
- [47] Flower, D. R., Le Bourlot, J., Pineau des Forêts, G., & Cabrit, S., 2003, MNRAS, 341, 70
- [48] Cabrit, S., Flower, D. R., Pineau des Forêts, G., Le Bourlot, J., & Ceccarelli, C., 2004, ApSS, 292, 501
- [49] Wrathmall, S. A., Gusdorf, A., & Flower, D. R., 2007, MNRAS, 382, 133
- [50] Lesaffre, P., Pineau des Forêts, G., Godard, B., Guillard, P., Boulanger, F., & Falgarone, E. 2013, A&A 550, A106
- [51] Godard, B., Pineau des Forêts, G., Lesaffre, P., Lehmann, A. & Falgarone, E. 2019, A&A 622, A100
- [52] Flower, D. R., & Gusdorf, A., 2009, MNRAS, 395, 234
- [53] Flower, D. R., & Pineau des Forêts, G., 2010, MNRAS, 406, 1745
- [54] Flower, D. R., Pineau des Forêts, G., & Rabli, D., 2010, MNRAS, 409, 29
- [55] Flower, D. R., & Pineau des Forêts, G., 2012, MNRAS, 421, 2786

- [56] Flower, D. R., & Pineau des Forêts, G., 2013, MNRAS, 436, 2143
- [57] Gustafsson, M., Ravkilde, T., Kristensen, L. E., et al., 2010, A&A, 513, 5
- [58] Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T. 2018 MNRAS 473, 1472
- [59] Guillet, V., Pineau des Forêts, G., & Jones, A. P., 2007, A&A, 476, 263
- [60] Guillet, V., Jones, A. P., & Pineau des Forêts, G., 2009, A&A, 497, 145
- [61] Guillet, V., Pineau des Forêts, G., & Jones, A. P., 2011, A&A, 527, 123
- [62] Anderl, S.; Guillet, V.; Pineau des Forêts, G.; Flower, D. R. 2013, A&A 556, A69
- [63] Chièze, J.-P., Pineau des Forêts, G., & Flower, D. R., 1998, MNRAS, 295, 672
- [64] Lesaffre, P., Chièze, J.-P., Cabrit, S., & Pineau des Forêts, G., 2004, A&A, 427, 147
- [65] Lesaffre, P., Chièze, J.-P., Cabrit, S., & Pineau des Forêts, G., 2004, A&A, 427, 157
- [66] McCoey, C., Giannini, T., Flower, D. R., & Caratti o Garatti, A., 2004, MNRAS, 353, 813
- [67] Giannini, T., McCoey, C., Caratti o Garatti, A., et al., 2004, A&A, 419, 999
- [68] Giannini, T., McCoey, C., Nisini, B., et al., 2006, A&A, 459, 821
- [69] Cabrit, S., Codella, C., Gueth, F., et al., 2007, A&A, 468, 29
- [70] Kristensen, L. E., Ravkilde, T. L., Pineau des Forêts, G., et al., 2008, A&A, 477, 203
- [71] Dionatos, O., Nisini, B., Cabrit, S., Kristensen, L. E., & Pineau des Forêts, G., 2010, A&A, 521, 7
- [72] Gusdorf, A., Giannini, T., Flower, D. R., et al., 2011, A&A, 523, 53
- [73] Panoglou, D., Cabrit, S., Pineau des Forêts, G., et al., 2012, A&A, 538, 2
- [74] Gusdorf, A., Anderl, S., Güsten, R., et al., 2012, A&A, 542, 19
- [75] Gusdorf, A.; Güsten, R.; Menten, K. M.; et al. 2016, A&A 585, A45
- [76] Neufeld, D., DeWitt, C., Lesaffre, P. et al. 2019, ApJ 878, L18
- [77] Guillard, P., Boulanger, F., Pineau des Forêts, G., & Appleton, P. N., 2009, A&A, 502, 515
- [78] Guillard, P., Ogle, P. M., Emonts, B. H. C., et al., 2012, ApJ, 747, 95
- [79] Guillard, P., Boulanger, F., Pineau des Forêts, G., et al., 2012, ApJ, 749, 158
- [80] Hailey-Dunsheath, S., Sturm, E., Fischer, J., et al., 2012, ApJ, 755, 57
- [81] Meijerink, R., Kristensen, L. E., Weiss, A., et al., 2013, ApJ, 762, 16

A.1 Setup of the problem and notations

We consider a plane-parallel shock in a stationary state, in which the magnetic field is 'frozen' into the ionised gas. The magnetic induction, which is taken to be perpendicular to the flow, will be denoted by *B*, with an initial value of B_0 . Let us denote by *z* the independent variable, which is the distance from some arbitrary reference point along the positive flow direction. We will solve for the steady-state equations of dynamics *in the reference frame of the shock wave*, where material is entering from z = 0 at velocity V_s and slows down to a final velocity $V_{\infty} = V_s/C$ where *C* is the maximum gas compression allowed by the magnetic field.

As the magnetic field interacts directly only with charged particles, the increase of magnetic pressure caused by shock compression will be felt by the neutral fluid only through ion-neutral collisions. If these collisions are rare (i.e. at low fractional ionization), substantial differences may develop between the velocities and kinetic temperatures of the ionised and neutrals fluids. Hence it is necessary to consider at least a two-fluid model of the shock region : charged fluid and neutral fluid.

However, whilst the preservation of charge neutrality requires that the flow velocity of the positive ions, V_i , and the electrons, V_e , should be the same, the kinetic temperatures of ions and electrons may differ if Coulomb scattering is insufficiently rapid to maintain a common thermal distribution. Accordingly, we will generally consider a three-fluid model of the medium, where $V_e = V_i$ but $T_e \neq T_i$. In the following, the suffixes *n*, *i*, and *e* will refer to the neutral fluid, the ionised fluid, and the electrons respectively.

A.2 Multi-fluid dynamical equations

All the following equations are taken from [12].

Particle number conservation. For the three fluids, conservation of particle number density requires that

$$\frac{d}{dz} \left(\frac{\rho_{\rm n} V_{\rm n}}{\mu_{\rm n}} \right) = \mathcal{N}_{\rm n} \tag{A.1}$$

where ρ_n is the mass density of the neutral fluid and μ_n the mean molecular weight; \mathcal{N}_n is the number of neutral particles created per unit volume and time. The corresponding equation for the positive ions is

$$\frac{d}{dz} \left(\frac{\rho_{\rm i} V_{\rm i}}{\mu_i} \right) = \mathcal{N}_{\rm i} \tag{A.2}$$

As we assume charge neutrality, the equation for electrons is identical to A.2. One can also write the conservation of particle number density for each individual species α

$$\frac{d}{dz}(n_{\alpha}V_{\alpha}) = \mathscr{C}_{\alpha} \tag{A.3}$$

where n_{α} is the number of particles α per unit volume, V_{α} is the velocity of the considered particle, and \mathcal{N}_{α} is the source term for creation of the species α .

Mass conservation. The equations expressing the conservation of mass of the neutral and ionised fluids may be written

$$\frac{d}{dz}(\rho_n V_n) = \mathscr{S}_n \text{ and } \frac{d}{dz}(\rho_i V_i) = \mathscr{S}_i = -\mathscr{S}_n \tag{A.4}$$

considering that neutral mass may be created only through the destruction of ionised mass. \mathscr{S}_n is the corresponding source term. The mass of electrons is negligible.

Momentum conservation. The equation of momentum conservation is, for the neutrals,

$$\frac{d}{dz}\left(\rho_{\rm n}V_{\rm n}^2 + \frac{\rho_{\rm n}k_{\rm B}T_{\rm n}}{\mu_{\rm n}}\right) = \mathscr{A}_{\rm n} \tag{A.5}$$

where T_n is the kinetic temperature of the neutral gas and k_B is Boltzmann's constant; \mathcal{A}_n is the source term that denotes the change in momentum of the neutral fluid per unit volume and time (due to ion-neutral collisions and normal viscosity). In the case of the ion-electron fluid, account must also be taken of the compression of the magnetic field

$$\frac{d}{dz}\left[\rho_{\rm i}V_{\rm i}^2 + \frac{\rho_{\rm i}k(T_{\rm i}+T_{\rm e})}{\mu_{\rm i}} + \frac{B^2}{8\pi}\right] = -\mathscr{A}_{\rm n} \tag{A.6}$$

Denoting the unperturbed value of the magnetic induction by B_0 , and the shock velocity by V_s , the fact that the field is frozen in the ionised fluid implies that $B \times V_i = B_0 \times V_s$, the flow velocity being expressed in the frame of reference of the shock. Equation A.6 then becomes

$$\frac{d}{dz}\left[\rho_{\rm i}V_{\rm i}^2 + \frac{\rho_{\rm i}k(T_{\rm i}+T_{\rm e})}{\mu_{\rm i}} + \frac{B_0^2}{8\pi} \left(\frac{V_{\rm s}}{V_{\rm i}}\right)^2\right] = -\mathscr{A}_{\rm n} \tag{A.7}$$

Once again, the inertia of electrons has been neglected.

Energy conservation. The conservation of energy of the neutral fluid may be expressed as

$$\frac{d}{dz}\left[\rho_{n}V_{n}^{3}+\frac{5}{2}\frac{\rho_{n}V_{n}kT_{n}}{\mu_{n}}+\frac{\rho_{n}V_{n}U_{n}}{\mu_{n}}\right]=\mathscr{B}_{n}$$
(A.8)

where U_n is the mean internal energy per neutral particle, and \mathscr{B}_n is the corresponding source term: the change in total energy of the neutral fluid per unit volume and time. For the ion-electron fluid, if we neglect the contribution of the internal energy of the ions, we have

$$\frac{d}{dz} \left[\rho_{\rm i} V_{\rm i}^3 + \frac{5}{2} \frac{\rho_{\rm i} V_{\rm i} k(T_{\rm i} + T_{\rm e})}{\mu_{\rm i}} + \frac{B_0^2}{4\pi} \frac{V_{\rm s}^2}{V_{\rm i}} \right] = \mathscr{B}_{\rm i} + \mathscr{B}_{\rm e}$$
(A.9)

For all these equations of conservation (number, mass, momentum, energy), source terms have to be estimated. These source terms can be the results of many different processes arising in the

shock context. The most general chemical and physical processes are discussed in Appendix B. Appendix C deals with the calculation of molecular radiative cooling.

Source terms: chemistry and collisions

The following are the chemical and collisional source terms for a 3-fluid C-shock calculation. They do not include the viscous friction and associated heating which dominate in a J-shock. For further details concerning these equations, the interested reader is referred to [12], [13], and [14].

B.1 Number and mass of particles

We note \mathscr{C}_{α} the production rate of atomic and molecular species per unit of volume and time. The total number of neutral and ionised particles created through chemical processes per unit of volume and time can be written

$$\mathcal{N}_{\alpha} = \sum_{\substack{\alpha, \\ \text{neutral} \\ \text{species}}} \mathcal{C}_{\alpha} \text{ and } \mathcal{N}_{i} = \sum_{\substack{\alpha, \\ \text{ionised} \\ \text{species}}} \mathcal{C}_{\alpha}$$
 (B.1)

Similarly the equations of mass transfer from the ionised fluid to the neutral fluid, and from the neutral fluid to the ionised fluid read

$$\mathscr{S}_{\alpha} = \sum_{\substack{\alpha, \\ \text{neutral} \\ \text{species}}} \mathscr{C}_{\alpha} m_{\alpha} \text{ and } \mathscr{S}_{i} = \sum_{\substack{\alpha, \\ \text{inised} \\ \text{species}}} \mathscr{C}_{\alpha} m_{\alpha}$$
(B.2)

The condition $\mathscr{S}_i = -\mathscr{S}_n$ provides a check-up of the consistency of the program.

B.2 Momentum

We note $\mathscr{C}_{\alpha\beta}$ the creation ($\mathscr{C}_{\alpha\beta} \ge 0$) or destruction ($\mathscr{C}_{\alpha\beta} \le 0$) rate of the α species through the β reaction. Thus

$$\mathscr{C}_{\alpha} = \sum_{\beta} \mathscr{C}_{\alpha\beta} \tag{B.3}$$

The momentum transfer between neutral and ionised fluid can be the result of three different processes.

(i) Reactive (inelastic) collisions between ions and neutrals. The momentum transfer rate towards the neutral fluid per unit of volume and time is

$$\mathscr{A}_{n}^{(i)} = \sum_{\substack{\alpha, \\ \text{neutral} \\ \text{species}}} \sum_{\beta} \mathscr{C}_{\alpha\beta} m_{\alpha} V_{\beta}$$
(B.4)

where the α species is assumed to be created with the velocity of the centre of mass of the reaction β , V_{β} . If all the reactants are neutrals, $V_{\beta} = V_n$, whereas if there are all ions, $V_{\beta} = V_i$. For a reaction between a neutral and an ion, $V_{\beta} = (m_i V_i + m_n V_n)/(m_i + m_n)$. Again, the condition

$$\sum_{\substack{\alpha,\\ \text{neutral}\\ \text{poccies}}} \sum_{\beta} \mathscr{C}_{\alpha\beta} m_{\alpha} V_{\beta} = \sum_{\substack{\alpha,\\ \text{ionised}\\ \text{species}}} \sum_{\beta} \mathscr{C}_{\alpha\beta} m_{\alpha} V_{\beta}$$
(B.5)

provides a check-up of the execution of the program.

(ii) Elastic collisions between ions and neutrals (ambipolar diffusion). The cross section of this process is approximated by

$$\sigma_{\rm in} = 2.41\pi \left(\frac{e^2 \alpha_{\rm n}}{\mu_{\rm in} V_{\rm in}^2}\right)^{1/2}$$
 (B.6)

where *e* is the charge of the electron, α_n the polarisability of neutrals, $\mu_{in} = \mu_i \mu_n / (\mu_i + \mu_n)$ the reduced mass of the ion-neutral system, and V_{in} their relative velocity. The corresponding rate coefficient is

$$\langle \sigma V \rangle_{\rm in} = 2.41 \pi \left(\frac{e^2 \alpha_{\rm n}}{\mu_{\rm in}} \right)^{1/2}$$
 (B.7)

and the momentum is transferred from ions to neutrals at the rate of

$$\mathscr{A}_{n}^{(ii)} = \frac{\rho_{n}\rho_{i}}{\mu_{n} + \mu_{i}} < \sigma V >_{in} (V_{i} - V_{n})$$
(B.8)

(iii) Elastic collisions between grains and neutrals (ambipolar diffusion). Because they are coupled to the charged fluid, charged grains also have a drift velocity with respect to the neutrals and play a role in momentum transfer. A good approximate of the corresponding momentum transfer rate is

$$\mathscr{A}_{n}^{(iii)} = n_{g}\pi a^{2}|V_{i} - V_{n}|(V_{i} - V_{n})\rho_{n}$$
(B.9)

where *a* is the rms radius of the grain size distribution at the local point, and n_g is the number of charged grains per unit volume.

B.3 Energy

Energy transfers also exist between neutral and charged fluids, through chemical, collisional, or radiative processes. In this section, chemical ((i) to (iii)) and collisional ((iv) to (vi)) processes are described, as well as some consequences of FUV irradiation (vii).

(i) Reactive collisions between ions and ions, neutrals and neutrals, ions and neutrals. Chemical reactions generate a transfer of kinetic energy because the product of the reaction has an actual velocity in the frame of the fluid. The corresponding rates for the neutral and ionised fluids are

$$\mathscr{B}_{n}^{(i)} = \sum_{\substack{\alpha, \\ \text{neutral} \\ \text{species}}} \sum_{\beta} \mathscr{C}_{\alpha\beta} \frac{1}{2} m_{\alpha} V_{\beta}^{2} \text{ and } \mathscr{B}_{i}^{(i)} = \sum_{\substack{\alpha, \\ \text{onised} \\ \text{species}}} \sum_{\beta} \mathscr{C}_{\alpha\beta} \frac{1}{2} m_{\alpha} V_{\beta}^{2}$$
(B.10)

The corresponding term for electrons can be neglected.

(ii) Energy transfer between reactants (ions, electrons and neutrals). If the enthalpy transfer between ionised and charged fluids is taken into account, formation ($\mathscr{C}_{\alpha\beta} > 0$) and destruction ($\mathscr{C}_{\alpha\beta} < 0$) must be treated separately. If the reactions generating more than two products (like molecular dissociation, for example) are of no importance, as was assumed in the previous model, then neutrals are created via the recombination of an ion with an electron, with respective kinetic temperatures T_i et T_e , and are destructed through ionisation at temperature T_n . Consequently, the rate at which enthalpy is added to the neutral fluid can be written

$$\mathscr{B}_{n}^{(ii)} = \sum_{\substack{\alpha, \\ \text{neutral} \\ \text{species}}} \left[\sum_{\substack{\beta, \\ \mathscr{C}_{\alpha\beta} > 0}} \mathscr{C}_{\alpha\beta} \frac{3}{2} k \frac{T_{i} + T_{e}}{2} + \sum_{\substack{\beta, \\ \mathscr{C}_{\alpha\beta} < 0}} \mathscr{C}_{\alpha\beta} \frac{3}{2} k T_{n} \right]$$
(B.11)

Similarly, for ions

$$\mathscr{B}_{i}^{(ii)} = \sum_{\substack{\alpha, \\ \text{ionised} \\ \text{species}}} \left[\sum_{\substack{\beta, \\ \mathscr{C}_{\alpha\beta} > 0}} \mathscr{C}_{\alpha\beta} \frac{3}{2} k T_{n} + \sum_{\substack{\beta, \\ \mathscr{C}_{\alpha\beta} < 0}} \mathscr{C}_{\alpha\beta} \frac{3}{2} k T_{i} \right]$$
(B.12)

And eventually, for electrons

$$\mathscr{B}_{e}^{(ii)} = \sum_{\substack{\alpha, \\ \text{ionised} \\ \text{species}}} \sum_{\substack{\beta, \\ \alpha_{\alpha\beta} < 0}} \mathscr{C}_{\alpha\beta} \frac{3}{2} k T_{e}$$
(B.13)

(iii) Endothermicity and exothermicity of chemical reactions. This contribution can take part in the heating or to the cooling of the medium. Consequently, ΔE , the energy default of chemical reactions can influence the thermal balance, with a heating (or cooling) rate of the neutral fluid per unit of volume and time equal to

$$\mathscr{B}_{n}^{(iii)} = \sum_{\substack{\alpha, \\ \text{neutral} \\ \text{species}}} \sum_{\substack{\beta, \\ \mathscr{C}_{\alpha\beta} > 0}} \mathscr{C}_{\alpha\beta} \frac{M_{\beta} - m_{\alpha}}{M_{\beta}} \Delta E_{\alpha}$$
(B.14)

where M_{β} is the total mass of the products of the reaction β . Similarly we have for the ionised fluid

$$\mathscr{B}_{i}^{(iii)} = \sum_{\alpha, \atop \text{species}} \sum_{\mathscr{C}_{\alpha\beta} > 0} \mathscr{C}_{\alpha\beta} \frac{M_{\beta} - m_{\alpha}}{M_{\beta}} \Delta E_{\alpha}$$
(B.15)

(iv) Elastic collisions between ions and neutrals. Heat is also exchanged between the different fluids through ion-neutral scattering. The heating rate of the neutrals generated by this process is given by

$$\mathscr{B}_{n}^{(i\nu)} = \frac{\rho_{n}\rho_{i}}{\mu_{n}\mu_{i}} < \sigma V >_{in} \frac{2\mu_{n}\mu_{i}}{(\mu_{n}+\mu_{i})^{2}} \left[\frac{3}{2}k(T_{i}-T_{n}) + \frac{1}{2}(V_{i}-V_{n})(\mu_{i}V_{i}+\mu_{n}V_{n})\right]$$
(B.16)

(v) Elastic collisions between electrons and neutrals. A similar expression is still valid for electron-neutral scattering, and simplifies thanks to the fact that $m_e \ll \mu_n$

$$\mathscr{B}_{n}^{(\nu)} = \frac{\rho_{n}\rho_{i}}{\mu_{n}\mu_{i}} < \sigma V >_{en} \frac{2m_{e}}{\mu_{n}} \left[\frac{4}{2}k(T_{e} - T_{n}) + \frac{1}{2}(V_{i} - V_{n})\mu_{n}V_{n} \right]$$
(B.17)

where the scattering cross section is considered as independent on the energy, with

$$<\sigma V>_{\rm en} = 10^{-19} \left(\frac{8kT_{\rm e}}{\pi m_{\rm e}}\right)^{1/2} {\rm m}^3 {\rm s}^{-1}$$
 (B.18)

(vi) Elastic collisions between electrons and ions (Joule heating). The heating rate of the fluid of electrons through coulombian scattering on ions can be estimated with

$$\mathscr{B}_{\rm e}^{(vi)} = \frac{4e^4}{\mu_{\rm i}kT_{\rm e}} \left(\frac{2\pi m_{\rm e}}{kT_{\rm e}}\right)^{1/2} \ln \Lambda \left(\frac{\rho_{\rm i}}{\mu_{\rm i}}\right)^2 k(T_{\rm i} - T_{\rm e}) \tag{B.19}$$

with $\mathscr{B}_{i}^{(\textit{vi})}$ = $-\mathscr{B}_{e}^{(\textit{vi})},$ and where

$$\Lambda = \frac{3}{2e^3} \left(\frac{k^3 T_e^3 \mu_i}{\pi \rho_i} \right)^{1/2}$$
(B.20)

(vii) **Photoionization** Ideally, the heating rate of the electron fluid through photoionisation should be given by

$$\mathscr{B}_{e}^{(vii)} = \sum_{\alpha} n_{\alpha} \int_{\nu_{\alpha}}^{\nu_{H}} \frac{4\pi J_{\nu}}{h\nu} a_{\nu}(\alpha) (h\nu - h\nu_{\alpha}) d\nu$$
(B.21)

where J_v is the mean intensity at frequency v, $a_v(\alpha)$ is the photoionisation cross section for the species α (depending on the frequency), and v_{α} is the threshold frequency of photoionisation. The integrate should be calculated until the Lyman limit of hydrogen (given by $hv_{\rm H} = 13.598$ eV). In practice, one often has to consider an estimate of the value of the integrate of the equation B.21, because of the uncertainties on the mean radiation intensity and on the frequency dependance of the photoionisation cross section. We use the formula

$$\delta E(\text{eV}) = \max\left\{5.7, \left[32 - 7\log\left(\frac{\rho_{\text{n}}}{\rho_{\text{i}}}\frac{\mu_{\text{i}}}{\mu_{\text{n}}}\right)\right]\right\}$$
(B.22)

The corresponding heating rate for the electrons fluid then writes

$$\mathscr{B}_{e}^{(vii)} = \sum_{\alpha} \delta E_{\alpha} \gamma_{\alpha} n_{\alpha}$$
(B.23)

where δE_{γ} stands for the average energy of the photoelectron produced by photoionisation of species α , with number density n_{α} and which photoionisation rate is γ_{α} .

Non-thermal electrons are also injected in the gas through two other processes:

- photoelectric effect on grains: is subject to considerable uncertainties depending on the physical properties of the grains and PAHs. An approximate prescription is implemented in V1.1 of the code, following [51].

- ionisation of atoms and molecules by cosmic rays: The injection rate of energy through this process may be written as $\Delta E \zeta n_H$, where ΔE is the average energy transferred to the electron gas per

cosmic-ray ionization and ζ is the cosmic ray ionisation rate per H nucleus. Monte-Carlo simulations show that in molecular gas, a large fraction of this energy is not used to heat the electron fluid, but to excite and dissociate H_2 . Hence the corresponding heating term is negligible compared to other source terms.

Source terms : molecular cooling

C.1 Basics of molecular rotational and vibrational excitation

The atoms of a molecule are never totally at rest. In fact, even in a solid which temperature approaches the absolute zero, atoms constantly oscillate around their equilibrium position. Three kinds of movements can occur in a molecule : global rotation, vibration (ie. periodic oscillation of the inter-atomic distance, as if the nuclei were connected by a spring), and bending modes (where angles between bonds oscillate about their equilibrium value).

Rotational movements of a molecule can be described to zero-th order by means of a model of rigid rotator. The resolution of the Schrodinger equation shows that the rotational energy is quantized and can only have well defined values. However, the description with a rigid rotator model is only an approximation, because centrifugal forces due to rotation tend to stretch the atomic bonds, which provokes a modification of the momentum of inertia. Taking the effects into account, the rotational energy levels (in joules) for a diatomic molecule are given by

$$E_{\rm r} = hcBJ(J+1) - hcDJ^2(J+1)^2$$
 (C.1)

where B is the rotational constant, expressed in cm^{-1} , related to the momentum of inertia I via

$$B = h/8\pi^2 cI \tag{C.2}$$

and where D is the centrifugal distorsion constant, related to the vibration frequency ω of the molecule through the equation

$$D = 4B^3/\omega^2 \tag{C.3}$$

J is the rotational quantum number of the molecule (J = 0, 1, 2, ...), which gives the value of the rotational kinetic moment (equal to $\sqrt{J(J+1)}h/2\pi$), *c* is the light velocity in the vacuum, and *h* is Planck's constant. The order of magnitude of the rotational energy is typically 1 J mol⁻¹.

The vibrational movements of a molecule can be described by means of the harmonic oscillator model. Once again, the resolution of the equation of Schrödinger for a unidimensional oscillator shows that the vibrational energy of a molecule is also quantized. Nevertheless, nuclei vibrations are never simple harmonic vibrations. The stretch of the oscillator is never perfectly elastic, and the vibrations are anharmonic. Taking this effect into account, the possible values of the vibrational energy of a diatomic molecule (in joules) are given by

$$E_{\rm v} = (\nu + \frac{1}{2})hc\omega_{\rm e} - (\nu + \frac{1}{2})^2hcx_{\rm e}\omega_{\rm e} + (\nu + \frac{1}{2})^3hcy_{\rm e}\omega_{\rm e} + \dots$$
(C.4)

where v is the vibrational quantum number (v = 0, 1, 2, ...), ω_e is the hypothetical frequency of the small amplitude vibrations around the equilibrium position of the nuclei, and x_e and y_e are the anharmonic constants. The typical value of the vibrational energy is around 10³ J mol⁻¹.

To these values of rotational and vibrational energy correspond several populated levels, between which quantum mechanics allows us to determine every permitted transition. Precisely, these transitions can be provoked by collisions likely to occur in interstellar shocks. These transitions accompany emission of photons, which can contribute to the cooling or heating of the interstellar gas. In the following calculations, distorsion or anharmonicity is not taken into account (that is, all the terms following the '-' in the expressions of rotational and vibrational energies). Only the case of molecular hydrogen is shown here, keeping in mind that rotational and/or vibrational de-excitation of other molecules such as CO, OH, NH₃, ou H₂O are also taken into account in the model.

C.2 The case of molecular hydrogen

Molecular hydrogen is of particular interest because of its important fractional abundance in the interstellar medium. Indeed, even if coefficient rates of the reactions in which molecular hydrogen is involved are rather low, they occur so many times that they have to be taken into account as major processes.

Molecular hydrogen being an homonuclear molecule, its mass centre is the same as the electric charge's barycentre. Consequently, molecular hydrogen has no permanent electric dipolar moment, and radiative transitions associated to an electronic transition are of quadrupolar kind. Nevertheless, molecular hydrogen being by far the most abundant molecule of the interstellar medium, its contribution to the heating or cooling of the ambiant gas is prevailing.

The lack of permanent electric dipolar moment has two important consequences for molecular hydrogen :

- molecular hydrogen exists in two forms, called ortho- or para- H₂. In the ortho-H₂, nuclear spins are aligned, thus I = 1, whereas for para-H₂, nuclear spins are anti-parallel, and consequently I = 0. Nuclei being made of identical fermions, the nuclear wave function that includes vibrational, rotational, and spin effects, must be antisymmetric with respect to the swap of photons. The wave function describing the fundamental state for vibration is invariant through this operation, whereas the rotational part of the wave function is multiplied by $(-1)^J$, where *J* is the rotational quantum number. The spin function of the triplet, I = 1, is symmetric. The state I = 1 (ortho-H₂) then corresponds to odd values of *J*, and the state J = 0 (para-H₂) is associated to even *J* values ;
- quadrupolar transitions don't allow the transition to one form from another.

Nevertheless, transitions remain possible between rovibrational levels of molecular hydrogen, which can play an important role in the energy transfers along the shock. This contribution must be taken into account in the source terms of the equations of conservation. Consequently, the populations of all the levels of molecular hydrogen must be computed.

C.2.1 Molecular hydrogen cooling

The method of evaluation of the contribution to the cooling by molecular hydrogen is presented in [13]. We call n_J the population density of the rotational level *J* of molecular hydrogen. The total

density of molecular hydrogen is thus

$$n(\mathrm{H}_2) = \sum_{\mathrm{J}} \mathrm{n}_{\mathrm{J}} \tag{C.5}$$

and the total density of hydrogen nuclei is

$$n(H) = n(H^0) + 2n(H_2)$$
 (C.6)

 $A(J \rightarrow J-2)$ is the rate of spontaneous radiative decay of the level $J \ge 2$ (in s^{-1}). The corresponding collisional de-excitation rate is

$$C(J \to J-2) = n_J \left[n(H^0) + n(H_2) \right] < \sigma v >_{J \to J-2}$$
(C.7)

where $\langle \sigma V \rangle_{J \longrightarrow J^{-2}}$ is the coefficient rate of collisional de-excitation, which we assume identical for molecular or atomic hydrogen. The collisional excitation rate is related to C.7 through the 'detailed balance'

$$(2J-3)C(J-2 \to J) = (2J+1)C(J \to J-2)\exp(-x)$$
(C.8)

with

$$x = 2(2J - 1)B/kT_n$$
 (C.9)

In equation C.9, *B* is the rotational constant of H_2 in his fundamental vibrational state, and *k* is Boltzmann's constant. In our calculations, we use the expression

$$<\sigma V>_{J\to J-2} = 4.6 \times 10^{-12} (2J-3) T_n^{1/2} (1+x)^{1/2}$$

 $\times \exp\left[\frac{-5.01x}{1+BJ(J+1)/kT_n} - 0.1187(4J-2)\right]$ (C.10)

If we only consider radiative and collisional transitions between rotational levels, the gradient of the population flux of the state *J* in a stationary state writes

$$\frac{d}{dz}(V_{n}n_{J}) = [C(J+2 \to J) + A(J+2 \to J)] n_{J+2} - [C(J \to J+2) + C(J \to J-2) + A(J \to J-2)] n_{J} + C(J-2 \to J) n_{J-2}$$
(C.11)

where v_n is the neutral fluid velocity in the *z* direction. At the static limit, $v_n = 0$, and left's part of the equation C.11 vanishes.

In practice, the population flux of the J level can also evolve because of the chemical reactions that create or destroy molecular hydrogen. If we assume that chemical reactions populate (and depopulate) the levels proportionally to their local density, then the equation C.11 can be generalized

$$\frac{d}{dz}(V_{n}n_{J}) = [C(J+2 \to J) + A(J+2 \to J)] n_{J+2}
- [C(J \to J+2) + C(J \to J-2) + A(J \to J-2)] n_{J}
+ C(J-2 \to J) n_{J-2}
+ \frac{n_{J}}{n(H_{2})} \frac{d}{dz} [u_{n}n(H_{2})]$$
(C.12)

where $u_n n(H_2)$ is the molecular flux of molecular hydrogen.

The radiative cooling rate of the gas via rotational transitions for molecular hydrogen can then write

$$[\mathscr{B}_{n}(H_{2})]_{radiative} = -\sum_{J \ge 2} n_{J} A(J \to J - 2) 2(2J - 1)B$$
(C.13)

As the populations of the excited states of molecular hydrogen are likely to grow a lot along the shocks, their contribution to the internal energy of the fluid must also be taken into account. The internal energy of neutral gas per volume unit is

$$\frac{\rho_{\rm n}}{\mu_{\rm n}} U_{\rm n} = \sum_{\rm V,J} n(\nu,J) E(V,J) \tag{C.14}$$

where n(V, J) is the density of molecular hydrogen in the rovibrational state (V, J), and where E(V, J) is the corresponding excitation energy. We don't take the excited vibrational states into account, and we then obtained

$$\frac{\rho_{\rm n}}{\mu_{\rm n}} U_n = \sum_{V,J} n_J B J (J+1)$$
(C.15)

Among the necessary conditions to seal the neutral particles energy conservation, we thus have

$$\frac{d}{dz}\left(\frac{\rho_{\rm n}v_{\rm n}U_{\rm n}}{\mu_{\rm n}}\right) = \sum_{J} BJ(J+1)\frac{d}{dz}(u_{\rm n}n_{\rm J}) \tag{C.16}$$

where $d(u_n n_l)/dz$ is provided by equation C.12.

Previously, we have assumed that the de-excitation coefficients for atomic and molecular hydrogen were identical. The key point is that molecular hydrogen requires a special treatment because of its important abundance in the interstellar medium, and in spite of its symmetry that prevents the existence of a permanent electric dipolar moment.

C.3 Cooling by other molecules

In non-dissociative (or partly dissociative) molecular shocks, CO and H_2O are the main contributors to radiative shock cooling besides H_2 . Methanol (CH₃OH) could also have a significant contribution if its abundance reaches a few 10^{-5} per H nuclei. However, modeling of Herschel observations of the B1 shock in the L1157 protostellar outflow indicate 5-10 times lower methanol abundances than this limit [54]. Current public versions of the code therefore neglect methanol cooling to compute the shock structure.

Rotational and vibrational cooling rates of CO and H_2O in warm interstellar gas were computed by Neufeld & Kaufman 1993 [10] in the Large Velocity Gradient (LVG) approximation for a wide range of parameters (densities, temperature, velocity gradients). These authors provided tables of results as well as a fortran routine to interpolate in them; it was implemented in the Paris-Durham Shock Code and is being called at each step when the parameter Cool_KN= 1. The same routine is used for ¹³CO, scaling the CO abundance by a factor 80. The interested reader is referred to the original paper [10] for further details on the assumptions made and their range of validity.

Example of "species.in" file

This is a standard species.infile used in the public version V0 (run on-line).

!	list of chemical species — Steady state at T = 19.67 K									
	mame, composition, initial density(cm-3), formation enthalpy (kCal/mol) —									
1	н	0100000000000	2.033D-04	051.634						
2	H2 Ho	02000000000000	4.999D-01	000.000						
4	C	00010000000000	4.769D-07	169.980 ->	C/H = 8.27e-5					
5	CH	0101000000000	9.254D-09	141.600	A&G : 3.55e-4					
6 7	CH2 CH3	02010000000000	3.342D-08	093.900						
8	CH4	040100000000000	3.644D-08	-15.970						
9	0	0000010000000	1.732D-05	058.980 ->	O/H = 1.24e-4					
10	02 0H	00000200000000	1.181D-05 1.230D-07	000.000	A&G : 7.41e-4					
12	H2O	02000100000000	4.638D-07	-57.100						
13	CO	0001010000000	8.166D-05	-27.200						
14 15	CO2 C2	00010200000000	8.027D-07	-93.965 198.200						
16	C2H	01020000000000	7.773D-09	113.300						
17	C2H2	02020000000000	8.667D-11	056.320						
18	C3H	000300000000000	6.924D-14 3.891D-13	194.000						
20	C3H2	02030000000000	2.850D-12	114.000 ***						
39	CH3OH	0401010000000	1.000D-16	-99.999						
42	H2CO	02010100000000	1.000D-16	-99.999 -99 999						
21	N	00001000000000	8.136D-06	112.530 ->	N/H = 6.39e-5					
22	NH	0100100000000	6.002D-08	090.000	A&G : 9.33e-5					
23	NH2 NH3	02001000000000	1.004D-06	046.200						
25	CN	00011000000000	5.552D-07	103.200						
26	HCN	0101100000000	7.974D-08	032.390						
27	HNC N2	01011000000000	8.993D-08 2 704D-05	048.000						
29	NO	00001100000000	3.072D-08	021.460						
32	S	0000000010000	1.413D-05	065.600	A&G : 1.86e-5					
33 34	SH H2S	01000000010000	2.613D-08	032.600 -04 230						
35	CS	00010000010000	1.396D-07	063.000						
36	SO	00000100010000	5.980D-08	001.200						
37	SO2	00000200010000	2.475D-07 2.036D-10	-70.300						
37	Si	00000000001000	1.126D-15	106.700	A&G : 3.55e-5					
38	SiH	0100000001000	7.402D-20	089.690						
39 40	SiH2 SiH3	02000000001000	7.267D-22 4 825D-24	069.140 * 048 540 *						
41	SiH4	04000000001000	3.171D-22	011.000						
42	SiO	00000100001000	3.242D-16	-24.300						
43	SiO2 Ma	00000200001000	2.114D-17	-73.000						
39	Fe	000000000000000000000000000000000000000	1.451D-08	098.700						
38	C54H18	1854000000000	8.701D-07	-99.999	PAH/nH =1(-8)					
63 41	G H2O*	006000000000000	4.027D-11	-99.999 H2O*/nH	Ngrain = $8.30(-11)$					
42	02*	00000200000001	1.000D-16	1120 /111 =	1.00(-4)					
42	CO*	0001010000001	8.271D-06		CO*/nH =8.27(-6)					
43	CO2* CH4*	00010200000001	1.339D-05 1.549D-06		CO2*/nH =1.34(-5) CH4*/nH =1.55(-6)					
44	NH3*	03001000000001	1.549D-05		NH3*/nH =1.55(-5)					
44	N2*	0000200000001	1.000D-16							
39 42	CH3OH*	04010100000001	1.859D-05		$CH3OH^*/nH = 1.86(-6)$ $H2CO^*/nH = 6.20(-6)$					
42	HCO2H*	02010200000001	7.240D-06		HCO2H*/nH =7.24(-6)					
42	OCS*	00010100010001	2.069D-07		OCS*/nH =2.07(-7)					
55	H2S*	02000000010001	3.720D-06		H2S*/nH =3.72(-6)					
41	SiH4*	040000000000000000000000000000000000000	1.000D-16							
42	SiO*	00000100001001	1.000D-16							
43 50	SIU2* 0**	00000200001001	1.000D-16		Novaux - 4*3 50(-5)					
60	Si**	00000000001002	3.370D-05		Noyaux = $3.370(-5)$					
61	Mg**	0000000100002	3.230D-05		Noyaux = 3.700(-5)					
62 63	re^^ C**	00010000000012	3.230D-05 1.629D-04		100yaux = 3.230(-5) Novaux = 1.630(-4)					
48	H+	01000001000000	2.756D-04	365.200						
49	H2+	0200001000000	2.285D-12	355.700						
50 51	нз+ Не+	03000001000000	8.213D-10	265.000 567.000						
52	C+	00010001000000	1.906D-09	429.700	A&G : 3.55e-4					
53	CH+	01010001000000	4.907D-14	387.000						

54 CH2+	02010001000000	8.715D-14	331.000	
55 CH3+	03010001000000	6.897D-10	262.000	
56 CH4+	04010001000000	8.658D-15	272.000 **	
57 CH5+	05010001000000	2.494D-11	216.000 *	
58 O+	00000101000000	3.618D-14	373.000	
59 O2+	00000201000000	1.577D-09	278.400	
60 OH+	01000101000000	2.924D-13	309.310	
61 H2O+	02000101000000	3.851D-13	233.700	
62 H3O+	03000101000000	2.982D-09	143.000	
63 CO+	00010101000000	2.717D-14	295.970	
64 HCO+	01010101000000	3.936D-08	197.300	
65 HCO2+	01010201000000	5.660D-11	141.000 *	
66 C2+	00020001000000	3.510D-17	476.000	
67 C2H+	01020001000000	7.229D-17	404.000	
68 C2H2+	02020001000000	7.053D-12	317.500	
69 C2H3+	03020001000000	4.930D-12	267.900	
70 C3+	00030001000000	9.910D-18	479.000 *	
71 C3H+	01030001000000	7.503D-16	381.000 *	
72 C3H2+	02030001000000	3.081D-15	330.000 * *	*
73 C3H3+	03030001000000	1.388D-13	282,000 * *	*
74 N+	00001001000000	1.481D-10	447.690	
75 NH+	01001001000000	9.212D-15	401.100	
76 NH2+	02001001000000	4.136D-13	302.700	
77 NH3+	03001001000000	1.240D-10	224,900	
78 NH4+	04001001000000	2.439D-09	151.000 *	
79 CN+	00011001000000	5.987D-16	429.300	
80 C2N+	00021001000000	7.071D-11	410.000 *	
81 HCN+	01011001000000	1.190D-14	346.000	
83 H2CN+	02011001000000	2.813D-09	226.000 *	
84 H2NC+	02011001000000	2.954D-11	265.000 *	
85 N2+	00002001000000	1.777D-14	359.298	
86 N2H+	01002001000000	2 603D-09	247 500	
87 NO+	00001101000000	2.896D-10	235.330	
88 HNO+	01001101000000	8.150D-12	256.800	
92 S+	0000001010000	5.319D-08	304.000 ->	S/H = 1.47e-5
93 SH+	01000001010000	9.585D-09	271.800	A&G : 1.86e-5
94 H2S+	02000001010000	5.897D-11	237.000	
95 H3S+	03000001010000	1.970D-10	190.000 *	
96 CS+	00010001010000	2.834D-14	324.000	
97 HCS+	01010001010000	5.237D-10	243.000	
98 SO+	00000101010000	7.732D-09	239.200	
99 HSO+	01000101010000	2.774D-10	210.000	
100HSO2+	01000201010000	2.872D-10	143.000	
101HOCS+	01010101010000	2.565D-12	181.000	
51 Si+	0000001001000	2.650D-17	295.000	
109SiH+	01000001001000	2.769D-19	271.820	
110SiH2+	02000001001000	6.140D-20	276.360 *	
111SiH3+	03000001001000	4.275D-22	237.320 *	
112SiH4+	04000001001000	2.794D-30	279.900	
113SiH5+	0500001001000	1.596D-24	219.380 *	
114SiO+	00000101001000	4.486D-23	239.520	
115SiOH+	01000101001000	2.715D-18	-99.999	
102Fe+	0000001000010	4.853D-10	280.240	LM: Fe/nH=1.5(-8)
103C54H18+	18540001000000	1.143D-09	-99.999	-(-)
63 G+	00600001000000	2.420D-12	-99.999	
104C54H18-	18540000000100	1.288D-07	-99.999	PAH/nH = 1(-8)
63 G-	0060000000100	3.599D-12	-99.999	Ngrain = 8.30(-11)
				, ,

Example of "chemistry.in" file

This is a standard chemistry infile used in the public version V0 (run on-line). Since this version does not allow for an external FUV field, the file does not include photo reactions other than those induced by "secondary photons" (H₂ fluorescence by cosmic ray electron impact).

l update : 1
! 29/08/01: ajout de C** (meme taux d'erosion que Si**)
 12/01/01: ajout des reactions d'erosion pour les especes Si**, Mg**, Fe**, O** attention: les alpha,beta, gamma d'ont plus le meme sens
24/08/00 : * creation from the file Chemistry.dat * suppression of one reaction that appears twice : ADSOR C3 +GRAIN =CH4* CH4* CH4* * suppression of the column 'DE' : the excess of energy is computed in the shock code. Remark : The old format is unchanged, if there is a value for DE, it is not read in the code. * change in one reaction (problem of conservation) SiOH+ +PHOTON =SiO+ O —>SiOH+ +PHOTON =SiO+ H * change 17 reactions : ->new specy=SECPHO (secondary photon) first reaction : 56 88 C +CRP =C + ELECTR last reaction : 56 88 CO +CRP =C O changes are (idem for the 17 reactions): CRP ->SECPHO in reactants beta = 140000.0 ->beta = 0.0
31/08/00 : * change 23 reactions : same as last change of 24/08/00 ifirst reaction : 56 88 C54H18 + SECPHO =C54H18+ ELECTR last reaction : 13 87 SiH4 +SECPHO =SiH3 H changes are (idem for the 22 reactions): CRP ->SECPHO in reactants beta = 0.0 or 140000.0 ->beta = 0.0
! ! columns : !
 * reterence or comment * R1, R2, P1, P2, P3, P4 : reactants and product of the reaction R1 + R2 ->P1 + P2 + P3 + P4 * gamma(cm3.s-1), beta(K), alpha : Ahrrenius coefficients
! in general : ! rate = gamma*EXP(-beta/T)*(T/300)**alpha ! special cases : ! * photo-reactions ! rate = gamma*EXP(-beta*Av)*RAD
 * CR induced desorption from grains rate = gamma*sigma(grain)*N(grains)/N(species on grains) * CR ionisation or dissociation rate = gamma*EXP(-beta/T)*(T/300)**alpha + other terms
rate = gamma*(T/300)**alpha*nH/n(H) three body reactions on grains surface rate = gamma* <sigma.v>(grain)*N(grains)/N(species on grains) /(Teff/beta+1)</sigma.v>
! * sputtering of grain mantle ! complicated ! ! * erosion of grain cores ! rate = gamma*EXP(-beta/T)*(T/300)**alpha * <sigma.v>(grain) ! * adsorption on grains ! rate = gamma*csigma.v>(grain)</sigma.v>
۹ <u>ــــــــــــــــــــــــــــــــــــ</u>

I									
1	R1	R2	P1	P2	P3	P4	gamma	alpha	beta
87 88	н	+H	=H2				8.14D-17	0.5	
IONIZ	Н	+ELECTR	=H+	ELECTR	ELECTR		9.20D-10	0.5	157890.0
IONIZ	H2	+ELECTR	=H2+	ELECTR	ELECTR		1.40D-09	0.5	179160.0
IONIZ	Н	+H+	=H+	H+	ELECTR		1.30D-13	0.5	157890.0
IONIZ	н	+H3+	=H3+	H+	ELECTR		1.30D-13	0.5	157890.0
IONIZ	Н	+He+	=He+	H+	ELECTR		1.30D-13	0.5	157890.0
IONIZ	н	+H3O+	=H3O+	H+	ELECTR		1.30D-13	0.5	157890.0
IONIZ	н	+H3S+	=H3S+	H+	ELECTR		1.30D-13	0.5	157890.0
IONIZ	Н	+HCO+	=HCO+	H+	ELECTR		1.30D-13	0.5	157890.0
IONIZ	н	+Fe+	=Fe+	H+	ELECTR		1.30D-13	0.5	157890.0
IONIZ	Н	+NH3+	=NH3+	H+	ELECTR		1.30D-13	0.5	157890.0
IONIZ	н	+NH4+	=NH4+	H+	ELECTR		1.30D-13	0.5	157890.0
IONIZ	н	+S+	=S+	H+	ELECTR		1.30D-13	0.5	157890.0

IONIZ	Н	+SiOH+	=SiOH+	H+	ELECTR		1.30D-13	0.5	157890.0
	H H2	+02+ +H+	=02+ -H+	H+ H2⊥	ELECTR		1.30D-13 1.10D-13	0.5	179160.0
IONIZ	H2	+H3+	=H3+	H2+	ELECTR		1.10D-13	0.5	179160.0
IONIZ	H2	+He+	=He+	H2+	ELECTR		1.10D-13	0.5	179160.0
IONIZ	H2	+H3O+	=H3O+	H2+	ELECTR		1.10D-13	0.5	179160.0
IONIZ	H2	+H3S+	=H3S+	H2+	ELECTR		1.10D-13	0.5	179160.0
	H2 H2	+HCO+ +Fe+	=HCO+ -Fe+	H2+ H2⊥	ELECTR		1.10D-13	0.5	179160.0
IONIZ	H2	+NH3+	=NH3+	H2+	ELECTR		1.10D-13	0.5	179160.0
IONIZ	H2	+NH4+	=NH4+	H2+	ELECTR		1.10D-13	0.5	179160.0
IONIZ	H2	+S+	=S+	H2+	ELECTR		1.10D-13	0.5	179160.0
IONIZ	H2	+SiOH+	=SiOH+	H2+	ELECTR		1.10D-13	0.5	179160.0
	H2 Ho	+02+	=02+ _H+	H2+ Ho+	ELECTR		1.10D-13	0.5	285328.0
IONIZ	He	+H3+	=H3+	He+	ELECTR		1.10D-13	0.5	285328.0
IONIZ	He	+He+	=He+	He+	ELECTR		1.10D-13	0.5	285328.0
IONIZ	He	+H3O+	=H3O+	He+	ELECTR		1.10D-13	0.5	285328.0
IONIZ	He	+H3S+	=H3S+	He+	ELECTR		1.10D-13	0.5	285328.0
	He He	+HCO+ +Fe+	=HCO+ -Fe+	He+ He+	ELECTR		1.10D-13 1.10D-13	0.5	285328.0
IONIZ	He	+NH3+	=NH3+	He+	ELECTR		1.10D-13	0.5	285328.0
IONIZ	He	+NH4+	=NH4+	He+	ELECTR		1.10D-13	0.5	285328.0
IONIZ	He	+S+	=S+	He+	ELECTR		1.10D-13	0.5	285328.0
IONIZ	He	+SiOH+	=SiOH+	He+	ELECTR		1.10D-13	0.5	285328.0
	He Lo			He+			2 000 00	0.5	285328.0
DISSO	H2	+LLLOIN +H	=H	Н	Н		1.00D-09	0.0	052000.0
DISSO	H2	+He	=He	H	H		1.00D-11	0.0	052000.0
DISSO	H2	+H2	=H2	Н	н		1.25D-11	0.0	052000.0
DISSO	H2	+H+	=H+	Н	Н		3.00D-11	0.5	052000.0
DISSO	H2	+H3+	=H3+	H	H		3.00D-11	0.5	052000.0
DISSO	H2 H2	+H3O+	=⊓e+ _H3O±	н	н		3.00D-11	0.5	052000.0
DISSO	H2	+H3S+	=H3S+	н	н		3.00D-11	0.5	052000.0
DISSO	H2	+HCO+	=HCO+	н	н		3.00D-11	0.5	052000.0
DISSO	H2	+Fe+	=Fe+	Н	Н		3.00D-11	0.5	052000.0
DISSO	H2	+NH3+	=NH3+	н	н		3.00D-11	0.5	052000.0
	H2 H2	+NH4+ +S+	=NH4+ -S+	н	н		3.00D-11	0.5	052000.0
DISSO	H2	+SiOH+	=SiOH+	н	н		3.00D-11	0.5	052000.0
DISSO	H2	+02+	=02+	H	Н		3.00D-11	0.5	052000.0
	C54H18	+ELECTR	=C54H18-	PHOTON			1.00D-07	0.00	0.000000
	C54H18+	+ELECTR	=C54H18	PHOTON			3.30D-06	50	0.00000.0
	C54H18+	+C54H18-	=C54H18	C54H18			3.00D-09	50	000000.0
	C54H18-	+H3+	=C54H18	H2	н		2 20D-08	50	00000000
	C54H18-	+H3+	=C54H18	H	н	н	2.20D-08	50	0.000000.0
	C54H18-	+He+	=C54H18	He			3.80D-08	50	0.000000
	C54H18-	+C+	=C54H18	С			2.20D-08	50	000000.0
	C54H18-	+H3O+	=C54H18	H2O	н		1.70D-08	50	000000.0
	C54H18-	+NH4+	=C54H18	NH3	Н		1.30D-08	50	00000000
	C54H18-	+HCO+	=C54H18	CO	н		1.40D-08	50	0.000000.0
	C54H18-	+HCS+	=C54H18	CS	Н		1.10D-08	50	0.000000
	C54H18-	+Si+	=C54H18	Si			1.40D-08	50	0.000000
	C54H18-	+Fe+	=C54H18	Fe			1.00D-08	50	000000.0
	C54H18	+3+ +H+	=C54H18+	Н			4 40D-09	0.00	00000000
	C54H18	+H3+	=C54H18+	H2	н		1.30D-09	0.00	0.000000.0
	C54H18	+H3+	=C54H18+	Н	н	Н	1.30D-09	0.00	0.000000
	C54H18	+He+	=C54H18+	He			2.20D-09	0.00	0.000000
	C54H18	+0+	=C54H18+		ц		1.30D-09	0.00	000000.0
	C54H18	+H3S+	=C54H18+	H2S	Н		7.40D-10	0.00	000000.0
	C54H18	+NH4+	=C54H18+	NH3	H		1.00D-09	0.00	0.000000.0
	C54H18	+HCO+	=C54H18+	CO	н		8.20D-10	0.00	0.000000
	C54H18	+HCS+	=C54H18+	CS	Н		6.50D-10	0.00	0.00000.0
	C54H18	+SI+	=C54H18+	Si			8.30D-10	0.00	000000.0
	004010	+re+	=034116+	S			5.90D-10	0.00	000000.0
	C54H18	+S+	-(:54H18+				7 80D-10	0 00	000000 0
	C54H18 C54H18-	+S+ +H	=C54H18+ =C54H18	Ĥ	ELECTR		7.80D-10 3.30D-09	0.00	000000.0 005500.0
	C54H18 C54H18- C54H18-	+S+ +H +C	=C54H18+ =C54H18 =C54H18	н С	ELECTR ELECTR		7.80D-10 3.30D-09 9.60D-10	0.00 0.00 0.00	000000.0 005500.0 005500.0
	C54H18 C54H18- C54H18- C54H18-	+S+ +H +C +CH	=C54H18+ =C54H18 =C54H18 =C54H18	H C CH	ELECTR ELECTR ELECTR		7.80D-10 3.30D-09 9.60D-10 9.60D-10	0.00 0.00 0.00 0.00	000000.0 005500.0 005500.0 005500.0
	C54H18 C54H18- C54H18- C54H18- C54H18- C54H18-	+S+ +H +C +CH +O	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18	H C CH O	ELECTR ELECTR ELECTR ELECTR		7.80D-10 3.30D-09 9.60D-10 9.60D-10 8.30D-10	0.00 0.00 0.00 0.00 0.00	000000.0 005500.0 005500.0 005500.0 005500.0
56 99	C54H18 C54H18- C54H18- C54H18- C54H18- C54H18- C54H18-	+S+ +H +C +CH +O +OH	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18 =C54H18	H C CH O OH	ELECTR ELECTR ELECTR ELECTR ELECTR		7.80D-10 3.30D-09 9.60D-10 9.60D-10 8.30D-10 8.30D-10	0.00 0.00 0.00 0.00 0.00 0.00	000000.0 005500.0 005500.0 005500.0 005500.0 005500.0
56 88 56 88	C54H18 C54H18- C54H18- C54H18- C54H18- C54H18- C54H18 C54H18	+S+ +H +C +CH +O +OH +SECPHO +SECPHO	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18+ =C54H18+	H C CH O OH ELECTR ELECTR	ELECTR ELECTR ELECTR ELECTR ELECTR		7.80D-10 3.30D-09 9.60D-10 9.60D-10 8.30D-10 8.30D-10 2.00D+04 2.00D+04	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000.0 005500.0 005500.0 005500.0 005500.0 140000.0 140000.0
56 88 56 88	C54H18 C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- G	+S+ +H +C +CH +O +OH +SECPHO +SECPHO +ELECTR	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18+ =C54H18 =G-	H C CH O OH ELECTR ELECTR PHOTON	ELECTR ELECTR ELECTR ELECTR ELECTR		7.80D-10 3.30D-09 9.60D-10 9.60D-10 8.30D-10 8.30D-10 2.00D+04 2.00D+04 6.90D-05	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000.0 005500.0 005500.0 005500.0 005500.0 140000.0 140000.0 00000.0
56 88 56 88	C54H18 C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- G G-	+S+ +H +C +CH +OH +SECPHO +SECPHO +ELECTR +H+	=C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =G- =G	H C CH O OH ELECTR ELECTR PHOTON H	ELECTR ELECTR ELECTR ELECTR ELECTR		7.80D-10 3.30D-09 9.60D-10 9.60D-10 8.30D-10 8.30D-10 2.00D+04 2.00D+04 6.90D-05 1.60D-06	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000.0 005500.0 005500.0 005500.0 005500.0 140000.0 140000.0 000000.0
56 88 56 88	C54H18 C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- G G- G- C-	+S+ +H +C +CH +O +OH +SECPHO +SECPHO +ELECTR +H+ +H3+	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =G- =G =G =G	H C CH O OH ELECTR ELECTR PHOTON H H2	ELECTR ELECTR ELECTR ELECTR H		7.80D-10 3.30D-09 9.60D-10 9.60D-10 8.30D-10 8.30D-10 2.00D+04 2.00D+04 6.90D-05 1.60D-06 4.61D-07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000.0 005500.0 005500.0 005500.0 005500.0 140000.0 140000.0 000000.0 000000.0
56 88 56 88	C54H18 C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- G G- G- G- G- G- G-	+S+ +H +C +OH +OH +SECPHO +SECPHO +ELECTR +H+ +H3+ +H3+ +H3+	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18 =C54H18+ =C54H18+ =C54H18+ =G=G =G =G =G =G	H C CH O O H ELECTR ELECTR PHOTON H H2 H2	ELECTR ELECTR ELECTR ELECTR H H	н	7.80D-10 3.30D-09 9.60D-10 9.60D-10 8.30D-10 8.30D-10 2.00D+04 2.00D+04 6.90D-05 1.60D-06 4.61D-07 4.61D-07 4.60D-07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000.0 005500.0 005500.0 005500.0 005500.0 140000.0 140000.0 000000.0 000000.0 000000.0
56 88 56 88	C54H18 C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- G G- G- G- G- G- G- G- G- G-	+S+ +H +C +CH +O +OH +SECPHO +SECPHO +ELECTR +H+ +H3+ +H3+ +H3+ +H6+ +C+	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18+ =C54H18+ =C54H18+ =G= =G =G =G =G =G =G	H C CH O O H ELECTR ELECTR PHOTON H H2 H H2 H C	ELECTR ELECTR ELECTR ELECTR ELECTR H	Н	7.80D-10 3.30D-09 9.60D-10 9.60D-10 8.30D-10 8.30D-10 2.00D+04 4.00D+05 1.60D-06 4.61D-07 4.61D-07 4.61D-07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	000000.0 005500.0 005500.0 005500.0 005500.0 140000.0 140000.0 000000.0 000000.0 000000.0 000000
56 88 56 88	C54H18 C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- G G- G- G- G- G- G- G- G- G- G- G- G-	+S+ +H +C +CH +O +OH +SECPHO +SECPHO +ELECTR +H+ +H3+ +H3+ +H3+ +H3+ +H0+	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18+ =C54H18+ =C54H18+ =G- =G =G =G =G =G =G =G =G	H C CH O O H ELECTR ELECTR PHOTON H H2 H2 H2O	ELECTR ELECTR ELECTR ELECTR H H	н	7.80D-10 3.30D-09 9.60D-10 9.60D-10 8.30D-10 2.00D+04 2.00D+04 2.00D+04 4.61D-07 4.61D-07 8.00D-07 4.61D-07 3.66D-07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	000000.0 005500.0 005500.0 005500.0 005500.0 140000.0 140000.0 000000.0 000000.0 000000.0 000000
56 88 56 88	C54H18 C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- G- G- G- G- G- G- G- G- G- G- G- G- G-	+S+ +H +C +CH +OH +SECPHO +SECPHO +ELECTR +H+ +H3+ +H3+ +H3+ +H2O+ +H3S+	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18+ =C54H18 =G- =G =G =G =G =G =G =G =G	H C C O O H ELECTR ELECTR PHOTON H H2 H H2 H2O H2S	ELECTR ELECTR ELECTR ELECTR H H H	н	7.80D-10 3.30D-09 9.60D-10 9.60D-10 8.30D-10 8.30D-10 2.00D+04 2.00D+04 4.60D-05 1.60D-06 4.61D-07 4.61D-07 4.61D-07 4.61D-07 4.61D-07 2.70D-07	0.00 0.00 0.00 0.00 0.00 0.00 0.50 0	000000.0 005500.0 005500.0 005500.0 005500.0 140000.0 140000.0 000000.0 000000.0 000000.0 000000
56 88 56 88	C54H18 C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- C54H18- G- G- G- G- G- G- G- G- G- G- G- G- G-	+S+ +H +C +CH +OH +SECPHO +SECPHO +ELECTR +H+ +H3+ +H3+ +H3+ +H4+ +H3O+ +H3O+ +H4+ UPC	=C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =G =G =G =G =G =G =G =G =G =G =G =G	H C C O O H ELECTR ELECTR PHOTON H H2 H He C H2O H2S NH3 OO	ELECTR ELECTR ELECTR ELECTR H H H	Н	7.80D-10 3.30D-09 9.60D-10 8.30D-10 8.30D-10 2.00D+04 2.00D+04 4.61D-07 4.61D-07 4.61D-07 3.66D-07 3.76D-07	0.00 0.00 0.00 0.00 0.00 0.00 0.50 0	000000.0 005500.0 005500.0 005500.0 005500.0 140000.0 140000.0 000000.0 000000.0 000000.0 000000
56 88 56 88	C54H18 C54H18- C5- C- C- C- C- C- C- C- C- C- C- C- C- C-	+S+ +H +C +CH +OH +SECPHO +SECPHO +ELECTR +H+ +H3+ +H3+ +H3+ +H4+ +H3O+ +H3O+ +H3O+ +H3O+ +H3O+ +H3O+ +H3O+ +H3O+ +H3O+ +H3O+ +H3O+ +C	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =G- =G =G =G =G =G =G =G =G =G =G =G =G =G	H C CH O O H ELECTR ELECTR PHOTON H H2 H H2 H2S H3 CO S S S S S S S S S S S S S S S S S S	ELECTR ELECTR ELECTR ELECTR ELECTR H H H H H H	Н	7.80D-10 3.30D-09 9.60D-10 8.30D-10 8.30D-10 8.30D-10 8.30D-10 8.30D-10 4.61D-07 4.61D-07 4.61D-07 4.61D-07 4.61D-07 2.70D-07 2.70D-07 2.96D-07	0.00 0.00 0.00 0.00 0.00 0.00 0.50 0	000000.0 005500.0 005500.0 005500.0 005500.0 005500.0 140000.0 140000.0 000000.0 000000.0 000000.0 000000
56 88 56 88	C54H18 C54H18- C5- C- C- C- C- C- C- C- C- C- C- C- C- C-	+S+ +H +C +CH +OH +SECPHO +SECPHO +ELECTR +H+ +H3+ +H3+ +H3+ +H4+ +C+ +H3O+ +H3O+ +H3O+ +HCO+ +HCO+ +SC+ +SC+ +C	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18+ =C54H18+ =C54H18+ =C54H18+ =C54H18+ =C54H18+ =C54H18+ =C54H18+ =C54H18+ =C54H18+ =C54H18+ =C54H18+ =C54H18+ =C54H18+ =C54H18	H C CH O O H ELECTR ELECTR PHOTON H H H C H2O H2S H3 CO CS Si	ELECTR ELECTR ELECTR ELECTR ELECTR H H H H H H H H H H H H	Η	7.80D-10 3.30D-09 9.60D-10 8.30D-10 8.30D-10 8.30D-10 2.00D+04 2.00D+04 4.61D-07 4.61D-07 4.61D-07 3.66D-07 2.70D-07 2.70D-07 2.36D-07 2.38D-07 3.301D-07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0	000000.0 005500.0 005500.0 005500.0 005500.0 005500.0 005500.0 140000.0 0000000.0 000000.0 000000.0 000000.0 000000.0 000000.0 000000.0 000000.0 000000.0 000000.0 0000000.0 000000.0 00000000
56 88 56 88	C54H18 C54H18- C5- C- C- C- C- C- C- C- C- C- C- C- C- C-	+S+ +H +C +CH +OH +SECPHO +SECPHO +ELECTR +H+ +H3+ +H3+ +H3+ +H3S+ +H3S+ +HCO+ +HCS+ +Si+ +Fe+	=C54H18+ =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =C54H18 =G =G =G =G =G =G =G =G =G =G =G =G =G	H C CH O O H ELECTR ELECTR PHOTON H H H C H2O H2S NH3 CO CS Si Fe	ELECTR ELECTR ELECTR ELECTR H H H H H H H H H H H H	Η	7.80D-10 3.30D-09 9.60D-10 8.30D-10 8.30D-10 2.00D+04 2.00D+04 4.61D-07 4.61D-07 4.61D-07 3.66D-07 2.70D-07 3.76D-07 2.96D-07 2.98D-07 2.38D-07 3.01D-07 2.13D-07	0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50	000000.0 005500.0 005500.0 005500.0 005500.0 005500.0 140000.0 140000.0 000000.0 000000.0 000000.0 000000

	G	+H+	=G+	H			1.60D-06	0.50	0.00000.0
	G	+H3+ +H3+	=G+ =G+	H2 H	Н	н	4.61D-07 4.61D-07	0.50	000000.0
	G	+He+	=G+	He			8.00D-07	0.50	0.00000.0
	G	+C+	=G+	C	ц		4.61D-07	0.50	000000.0
	G	+H3S+	=G+ =G+	H2S	Н		2.70D-07	0.50	000000.0
	G	+NH4+	=G+	NH3	Н		3.76D-07	0.50	0.00000.0
	G	+HCO+	=G+	CO	Н		2.96D-07	0.50	0.00000.0
	G	+HCS+ +Si+	=G+ =G+	Si	н		2.38D-07 3.01D-07	0.50	000000.0
	G	+Fe+	=G+	Fe			2.13D-07	0.50	0.000000
	G	+S+	=G+	S			2.82D-07	0.50	0.00000.0
	G+	+ELECIR	=G	PHOTON			6.90D-05	0.50	140000.0
	G-	+SECPHO	=G	ELECTR			0.41D+09	0.00	140000.0
P& H	Н	+CRP	=H+	ELECTR			4.60D-01	0.00	0.00000.0
Р& Н	He	+CRP	=He+	ELECTR			5.00D-01	0.00	000000.0
Γα Π P& H	H2 H2	+CRP	=n+ =H	Н	ELEGIN		4.00D-02 1.50D+00	0.00	000000.0
P& H	H2	+CRP	=H2+	ELECTR			9.60D-01	0.00	0.00000.0
P& H	С	+CRP	=C+	ELECTR			1.80D+00	0.00	0.000000
P& H 56.88	C C	+CRP +SECPHO	=0+ -C+	ELECTR			2.80D+00 1.02D±03	0.00	140000.0
2Z89	СН	+SECPHO	=C	H			1.46D+03	0.00	140000.0
13 87	CH4	+SECPHO	=CH3	Н			4.68D+03	0.00	140000.0
2Z89	CH+	+SECPHO	=C	H+			3.52D+02	0.00	140000.0
2Z89	H2O	+SECPHO	=0 =0H	н			1.94D+03	0.00	140000.0
2Z89	02	+SECPHO	=02+	ELECTR			2.34D+02	0.00	140000.0
2Z89	02	+SECPHO	=0	0			1.50D+03	0.00	140000.0
2Z89 2789	CO2 C2	+SECPHO	=CO =C	C			3.42D+03 4 74D+02	0.00	140000.0
77 87	C2H	+SECPHO	=C2	Ĥ			8.16D+03	0.00	140000.0
2Z89	C2H2	+SECPHO	=C2H	H			1.03D+04	0.00	140000.0
2289	C2H2	+SECPHO	=C2H2+	C			2.62D+03	0.00	140000.0
2200	C3H	+SECPHO	=C2 =C3	Н			8.16D+03	0.00	140000.0
13 87	C3H2	+SECPHO	=C3H	н			8.16D+03	0.00	140000.0
56 88	co	+SECPHO	=C	0			6.80D+02	1.20	140000.0
UMIST	00	+H2 +H	=0H =0H	С			1.55D-13	2.80	077700 0
72 83	02	+H	=OH	õ			1.63D-09	90	008750.0
16B83	OH	+H	=0	H2			7.00D-14	2.80	001950.0
16B83	UH H2O	+H2 ⊥H	=H2O -OH	H H2			9.54D-13 5.24D-12	2.00	001490.0
17B73	C	+H2	=CH	H			1.16D-09	0.50	014100.0
P& H	С	+H	=CH	PHOTON			1.00D-17	0.00	0.000000
17872	CH	+H2	=CH2	H			2.38D-10	0.00	001760.0
23B83	CH3	+H2	=CH3 =CH4	н			3.00D-10	0.00	005460.0
59 82	C2	+H2	=C2H	н			1.60D-10	0.00	001419.0
S88	C2H	+H2	=C2H2	H			1.14D-11	0.00	000950.0
22 86	CH2	+n +H	=C =CH	H2			4.70D-10	0.00	002200.0
17B73	CH3	+H	=CH2	H2			5.18D-11	0.17	005600.0
23B83	CH4	+H	=CH3	H2			3.00D-10	0.00	006560.0
P& H 93.88	02 0H	+0	=CO -CO2	н			3.30D-11 4.40D-13	0.50 -1 15	0000000.0
95 88	OH	+C	=CO	H			3.10D-11	36	0.000000.0
94 88	OH	+0	=02	H			3.10D-11	36	0.00000.0
61 81 61 81	CH	+0	=HCO+ -CO	H			2.40D-14 9.50D-11	0.50	000000.0
P& H	CH2	+0	=CO	н	н		2.00D-11	0.50	0.000000.0
X	CH3	+0	=CO	H2	н		1.80D-10	0.50	0.00000.0
Р& Н Р& Н	C2H	+0	=00	CH			5.00D-11	0.50	000000.0
Х	C3	+0	=CO	C2			5.00D-11	0.50	000000.0
13 87	C3H	+0	=C2H	CO			5.00D-11	0.50	0.00000.0
13 87	C3H2	+0	=C2H2				5.00D-11	0.50	000000.0
24183 GRF92	0+ C+	+⊓ +H2	=CH2+	PHOTON			5.00D-17	0.00	000000.0
14 87	C+	+H2	=CH+	Н			1.50D-10	0.00	004640.0
14 87	CH+	+H	=C+	H2			1.50D-10	0.00	0.000000
27877 27877	CH2+	+H2 ⊥H	=CH2+ -CH+	H H2			1.20D-09	0.00	0000000.0
28B75	CH2+	+H2	=CH3+	H			7.00D-10	0.00	000000.0
28B75	CH3+	+H	=CH2+	H2			7.00D-10	0.00	010560.0
4Z89 28B75	CH3+	+H2 +H2	=CH5+ =CH4+	PHOTON H			6.00D-15	0.00	000000.0
28B75	CH4+	+H	=CH3+	H2			2.00D-10	0.00	000000.0
28B75	CH4+	+H2	=CH5+	Н			4.00D-11	0.00	0.00000.0
28B75	CH5+		=CH4+ _⊌	H2 PHOTON			4.00D-11	0.00	002200.0
22Z90	H2+	+ELECTR	=n =H	H			1.60D-12	43	000000.0
P& H	He+	+ELECTR	=He	PHOTON			4.50D-12	67	0.000000
McC03	H3+	ELECTR	H	Н	н		5.10d-08	52	0.000000
NICC03 P& H	по+ С+	+ELFCTR	⊓∠ =C	HOTON			1.700-08 4.40D-12	52 61	000000.0
22Z90	CH+	+ELECTR	=C	H			1.50D-07	42	000000.0
22Z90	CH2+	+ELECTR	=C	H2			1.25D-07	50	0.000000
22290	GH2+	+ELECIK	=UH	н			1.25D-07	50	0.000000

22Z90	CH3+	+ELECTR	=CH2	Н			1.75D-07	50	0.00000.0
22Z90	CH3+	+ELECTR	=CH	H2			1.75D-07	50	000000.0
P& H		+ELECTR	=CH3 =CH2	н	н		3.00D-07	50	
22Z90	CH5+	+ELECTR	=CH	H2	H2		8.75D-08	30	0.00000.0
22Z90	CH5+	+ELECTR	=CH2	H2	Н		8.75D-08	30	0.000000
22Z90	CH5+	+ELECTR	=CH3	H2			8.75D-08	30	0.000000
22Z90	CH5+	+ELECTR	=CH4	н			8.75D-08	30	000000.0
/9/9 01P70	H+ L2	+H2	=H2+	H Llo			6.40D-10	0.00	021300.0
P& H	H2+	+H2	=H3+	H			2.10D-09	0.00	000000.0
P& H	H3+	+H	=H2+	H2			2.10D-09	0.00	020000.0
52R84	H+	+0	=0+	Н			6.00D-10	0.00	000227.0
P& H	H+	+OH	=OH+	Н			2.10D-09	0.00	0.00000.0
80R74	H+	+02	=02+	н			1.20D-09	0.00	0.00000.0
80R/4 P& H	п+ Н+	+H2U +CH	=H2O+	н			1 00D-09	0.00	000000.0
P& H	H+	+CH2	=CH+	H2			1.40D-09	0.00	000000.0
P& H	H+	+CH2	=CH2+	Н			1.40D-09	0.00	0.000000.0
P& H	H+	+CH3	=CH3+	н			3.40D-09	0.00	0.000000.0
80R74	H+	+CH4	=CH3+	H2			2.28D-09	0.00	0.000000
80R74	H+	+CH4	=CH4+	Н			1.52D-09	0.00	0.00000.0
	H+ LD.	+002	=HCO+	0			4.20D-09	0.00	000000.0
P& H	⊓2+ H2⊥	+0	=0H+ -0H+	н			2.40D-09 1 50D-09	0.00	000000.0
38R75	H2+	+CO	=HCO+	н			2.16D-09	0.00	000000.0
38R75	H2+	+CO	=CO+	H2			6.44D-10	0.00	0.000000
P& H	H2+	+OH	=OH+	H2			7.60D-10	0.00	0.000000
38R75	H2+	+H2O	=H2O+	H2			3.90D-09	0.00	0.000000
38R75	H2+	+H2O	=H3O+	Н			3.40D-09	0.00	0.00000.0
РАН	H2+	+CH	=CH+	H2			7.10D-10	0.00	000000.0
P& H	⊓2+ H2⊥	+CH2	=CH2+	н			1 00D-09	0.00	000000.0
P& H	H2+	+CH2	=CH2+	H2			1.00D-09	0.00	0.00000.0
P& H	H3+	+0	=OH+	H2			8.00D-10	0.00	0.000000.0
P& H	H3+	+OH	=H2O+	H2			1.30D-09	0.00	0.000000
5Z89	H3+	+CO	=HCO+	H2			1.70D-09	0.00	0.00000.0
39R82	H3+	+CO2	=HCO2+	H2			2.00D-09	0.00	000000.0
40H75	H3+	+H2O	=H3O+	H2			4.30D-09	0.00	000000.0
P& H	по+ Нат	+CH	=CH2+	H2			1 2002-09	0.00	000000.0
P& H	H3+	+CH2	=CH3+	H2			1 70D-09	0.00	00000000
P& H	H3+	+CH3	=CH4+	H2			2.10D-09	0.00	000000.0
5Z89	H3+	+CH4	=CH5+	H2			1.90D-09	0.00	0.000000.0
85 86	He+	+H2	=H+	Н	He		1.10D-13	24	0.000000
P& H	He+	+OH	=OH+	He			5.50D-10	0.00	000000.0
P& H	He+	+OH	=0+	н	He		5.50D-10	0.00	000000.0
74 60	He+	+H2O	=0n+ =H2O+	П	пе		2.30D-10 4.86D-11	94	000000.0
74 85	He+	+H2O	=H+	OH	He		1.64D-10	94	000000.0
42R85	He+	+CO	=C+	0	He		1.50D-09	0.00	0.000000.0
42R85	He+	+02	=O+	0	He		1.00D-09	0.00	0.000000.0
81R77	He+	+CO2	=CO+	0	He		7.70D-10	0.00	0.000000
81R77	He+	+CO2	=0+	CO	He		1.80D-10	0.00	0.00000.0
81R//	He+	+002	=0+	02	He		4.00D-11	0.00	000000.0
P& H	He+	+CH2	=C+	H2	He		7 50D-10	0.00	000000.0
P& H	He+	+CH2	=CH+	Н	He		7.50D-10	0.00	000000.0
P& H	He+	+CH3	=CH+	H2	He		9.00D-10	0.00	0.000000.0
P& H	He+	+CH3	=CH2+	Н	He		9.00D-10	0.00	0.000000
43R76	He+	+CH4	=H+	CH3	He		4.00D-10	0.00	000000.0
43R76	He+	+CH4	=CH+	H2	H	He	2.56D-10	0.00	000000.0
43876	He+	+CH4 +CH4	=CH2+	п2 Н	Не		8.00D-10	0.00	000000.0
43R76	He+	+CH4	=CH4+	He	110		1.60D-11	0.00	000000.0
88 85	C+	+OH	=CO+	Н			8.00D-10	0.00	0.000000.0
88 85	C+	+OH	=H+	CO			8.00D-10	0.00	0.000000
74 85	C+	+H2O	=HCO+	Н			2.43D-09	63	0.000000
73R84	C+	+02	=0+	co			5.15D-10	0.00	0.000000.0
/3R84	C+	+02	=00+	0			3.15D-10	0.00	000000.0
79 92	C+	+002	=00+	00			2 900 10	0.00	000000.0
78.83	C+	+CH	=02+ =CH+	C			3.80D-10	0.00	0000000.0
P& H	C+	+CH2	=CH2+	č			5.20D-10	0.00	0.00000.0
P& H	C+	+CH2	=C2H+	Ĥ			5.20D-10	0.00	0.00000.0
7R82	C+	+CH4	=C2H2+	H2			3.25D-10	0.00	0.00000.0
7R82	C+	+CH4	=C2H3+	Н			9.75D-10	0.00	000000.0
52R84	0+	+H	=H+	0			6.00D-10	0.00	000000.0
52H84	024	+H2 +C	=0H+ =CO+				1.20D-09	0.00	000000.0
P& H	02+	+C	=C+	02			5.20D-11	0.00	0000000
44R81	OH+	+H2	=H2O+	Ĥ			1.01D-09	0.00	0.000000.0
44R81	H2O+	+H2	=H3O+	н			8.30D-10	0.00	0.000000
P& H	H3O+	+H	=H2O+	H2			6.10D-10	0.00	020500.0
P& H	H3O+	+C	=HCO+	H2			1.00D-11	0.00	0.000000
P&H	H3O+	+CH	=CH2+	H2O			6.80D-10	0.00	000000.0
га н Р& н	n30+ 0+	+UHZ +FLECTR	=0n3+ =0				3.40D-10	0.00 - 64	000000.0
1Z83	02+	+ELECTR	=0	0			1.95D-07	-,70	000000000
22Z90	OH+	+ELECTR	=0	Ĥ			3.75D-08	50	000000.0
22Z90	H2O+	+ELECTR	=OH	н			3.15D-07	50	0.000000
00 00	H3O+	+ELECTR	-OH	H2			8 45D-07	- 50	000000 0

90 88	H3O+	+ELECTR	=H2O	Н		4.55D-07	50	000000.0
49R76	CH3+	+0	=HCO+	H2		3.10D-10	0.00	000000.0
49R76	CH3+	+0	=H3+	CO		1.30D-11	0.00	000000.0
8R80	CH5+	+0	=H3O+	CH2		2.16D-10	0.00	000000.0
51R80	CH5+	+CO	=HCO+	CH4		9.90D-10	0.00	000000.0
40R75	CH5+	+H2O	=H3O+	CH4		3.70D-09	0.00	000000.0
52R84	CO+	+H2	=HCO+	н		1.30D-09	0.00	000000.0
52R84	CO+	+H	=H+	CO		7.50D-10	0.00	000000.0
52R84	HCO+	+H	=CO+	H2		1.30D-09	0.00	024500.0
P& H	HCO+	+C	=CH+	CO		1.10D-09	0.00	000000.0
P& H	HCO+	+CH	=CH2+	CO		6.30D-10	0.00	000000.0
P& H	HCO+	+CH2	=CH3+	CO		8.60D-10	0.00	000000.0
27R77	HCO+	+CH3	=CH4+	CO		1.40D-09	0.00	009060.0
51B80	HCO+	+CH4	=CH5+	CO.		9 90D-10	0.00	004920.0
65R78	HCO+	±H2O	-H3O+	00		2 50D-09	0.00	000000 0
15	HCO+	+02	-HCO2+	0		1 00D-09	0.00	001450.0
15		+0		02		1.000-00	0.00	000000 0
15	HCO+	+OH	-HCO2+	H L		1.000-00	0.00	000000.0
15		+011				1.00D-09	0.00	000000.0
15		+П	=HCO+	COD		1.00D-09	0.00	007500.0
10		+00		002		1.00D-09	0.00	000000.0
6000		+002		00		7 200 10	0.00	000000.0
00700	HUU2+		=0H5+	002		7.80D-10	0.00	000000.0
22290	00+	+ELECTR	=0	0		1.00D-07	40	000000.0
22290	HCO+	+ELECTR	=00	н		2.40D-07	69	000000.0
6288	HCO2+	+ELECTR	=002	Н		2.24D-07	50	000000.0
6288	HC02+	+ELECTR	=00	OH		1.16D-07	50	000000.0
2/0//	C2+	+H2	=C2H+	Н		1.40D-09	0.00	000000.0
45C77	C2+	+H2	=H+	C2H		1.50D-09	0.00	001260.0
45C77	C2H+	+H2	=C2H2+	н		1.70D-09	0.00	000000.0
46C84	C2H2+	+H2	=C2H3+	н		5.00D-10	0.00	0.008000
22Z90	C2+	+ELECTR	=C	С		3.00D-07	50	000000.0
22Z90	C2H+	+ELECTR	=C2	Н		1.35D-07	50	000000.0
22Z90	C2H+	+ELECTR	=CH	С		1.35D-07	50	0.00000.0
75 88	C2H2+	+ELECTR	=C2H	н		1.50D-07	50	0.00000.0
75 88	C2H2+	+ELECTR	=CH	CH		1.50D-07	50	000000.0
75 88	C2H3+	+ELECTR	=C2H	H2		1.35D-07	50	000000.0
75 88	C2H3+	+ELECTR	=CH2	CH		1.35D-07	50	000000.0
75 88	C2H3+	+ELECTR	=C2H2	н		3.00D-08	50	000000.0
58 83	C3+	+H2	=C3H+	н		3.00D-10	0.00	000000.0
46C84	C3H+	+H2	=C3H2+	н		1.00D-09	0.00	000500.0
62 86	C3H+	+H2	=C3H3+	PHOTON		3.00D-13	-1.0	000000.0
46C84	C3H2+	+H2	=C3H3+	н		1.00D-10	0.00	002000.0
27C77	C2+	+H2	=C2H+	н		1.40D-09	0.00	000000.0
45C77	C2+	+H2	=H+	C2H		1.50D-09	0.00	001260.0
45C77	C2H+	+H2	=C2H2+	Ĥ		1.70D-09	0.00	000000.0
46C84	C2H2+	+H2	=C2H3+	н		5.00D-10	0.00	000800.0
22Z90	C2+	+ELECTR	=C	C		3.00D-07	50	000000.0
22Z90	C2H+	+ELECTR	=C2	Ĥ		1.35D-07	50	000000.0
22790	C2H+	+FLECTB	=CH	C		1 35D-07	- 50	000000 0
75 88	C2H2+	+ELECTR	=C2H	Ĥ		1.50D-07	50	000000.0
75.88	C2H2+	+ELECTR	-CH	СН		1 50D-07	- 50	00000000
75.88	C2H3+		-C2H	H2		1.350-07	- 50	000000.0
75.88	C2H3+		-CH2	CH		1.350-07	- 50	000000.0
75.88	C2H3+		-C2H2	н		3.000-08	- 50	000000.0
58.83	C3+	+660111	-C3H+	ü		3.00D-00	0.00	000000.0
46084	C3H+	+H2	-C3H2+	н		1 000-09	0.00	000000.0
62.86	C2L	+112 , LI2	-C2H2			2 00D 12	1.00	0000000.0
46094	C2H2	+112	-C2H2			1 00D 10	0.00	000000.0
-000-	C2		-03110+	C		2 00D 07	50	002000.0
	C2H -		=02	CLL CLL		1 50D 07	50	000000.0
	C2L		-02	C		1.500-07	50	000000.0
75 00	C2L12.		=0211 C2LI	L L		1.500-07	50	000000.0
75 99	C3H2+		=C3H			1.50D-07	50	000000.0
75.99	C2H2		-0211			1.500-07	50	000000.0
75.99	C2H2		=C3H2			1.50D-07	50	000000.0
7300 D2. Ц	U3113+ Ц.	+02	-C2			2 100 00	50	000000.0
	П+ Ц.	+02	=02+			3.10D-09	0.00	000000.0
	п+ ц.	+020	=02+	H2 U		1.50D-09	0.00	000000.0
	П+ Ц.	+020	=02H+			1.30D-09	0.00	000000.0
70 03	П+ Ш.	+0282	=02H+	п <i>2</i>		2.00D-09	0.00	000000.0
1000	П+ Ц.	+0202	=02112+			2.00D-09	0.00	000000.0
4 84	п+ 	+03H	=03+	H2		2.00D-09	0.00	000000.0
4 84	H+	+C3H	=C3H+	Н		2.00D-09	0.00	000000.0
4 84	H+	+C3H2	=C3H+	H2		2.00D-09	0.00	000000.0
4 84	H+	+C3H2	=C3H2+	Н		2.00D-09	0.00	000000.0
P& H	He+	+C2H	=C+	СН	Не	5.10D-10	0.00	000000.0
P& H	He+	+C2H	=CH+	C	He	5.10D-10	0.00	000000.0
P& H	He+	+C2H	=C2+	н	He	5.10D-10	0.00	000000.0
3H75	He+	+C2H2	=CH+	CH	не	7.70D-10	0.00	000000.0
3H75	He+	+C2H2	=C2+	H2	не	1.61D-09	0.00	000000.0
3H75	He+	+C2H2	=C2H+	н	не	8./5D-10	0.00	000000.0
3H75	He+	+C2H2	=C2H2+	He		2.45D-10	0.00	000000.0
4 84	He+	+C3H	=C3+	н	He	2.00D-09	0.00	000000.0
4 84	He+	+C3H2	=C3H+	н	He	1.00D-09	0.00	000000.0
4 84	He+	+C3H2	=C3+	H2	He	1.00D-09	0.00	000000.0
P& H	H3+	+C2H	=C2H2+	H2		1.70D-09	0.00	000000.0
2R77	H3+	+C2H2	=C2H3+	H2		2.90D-09	0.00	000000.0
4 84	H3+	+C3H	=C3H2+	H2		2.00D-09	0.00	000000.0
4 84	1.10	±C3H2	=C3H3+	H2		2.00D-09	0.00	000000.0
	H3+	1 OOLIE						
P& H	H3+ C+	+C2H	=C3+	н		1.00D-09	0.00	000000.0
P& H 7R82	H3+ C+ C+	+C2H +C2H2	=C3+ =C3H+	H H		1.00D-09 2.20D-09	0.00 0.00	000000.0 000000.0
P& H 7R82 P& H	H3+ C+ C+ HCO+	+C2H +C2H2 +C2H2	=C3+ =C3H+ =C2H2+	H H CO		1.00D-09 2.20D-09 7.80D-10	0.00 0.00 0.00	000000.0 000000.0 000000.0

4 84	HCO+	+C3H	=C3H2+	CO		1.40D-09	0.00	000000.0
4 84	HCO+	+C3H2	=C3H3+	00		1.40D-09	0.00	000000.0
1000	H3O+	+02H +C2H2	=02H2+ -C2H3+	H2O		1.00D-09	0.00	004100.0
75 88	H3O+	+C3H	=C3H2+	H2O		2.00D-09	0.00	000000.0
75 88	H3O+	+C3H2	=C3H3+	H2O		3.00D-09	0.00	000000.0
10R86	C2H2+	+H2O	=H3O+	C2H		2.20D-10	0.00	000000.0
10R86	C2H3+	+H2O	=H3O+	C2H2		1.11D-09	0.00	000000.0
83H83	C3H+	+H2O	=HCO+	C2H2		2.48D-10	0.00	000000.0
03803 P& H	U3П+ Н±	+H2U	=C2H3+	LO H		2.02D-10 7.40D-09	0.00	000000.0
P& H	H3+	+Fe	=Fe+	H2	н	4.90D-09	0.00	000000.0
P& H	C+	+Fe	=Fe+	C	••	2.60D-09	0.00	000000.0
P& H	HCO+	+Fe	=Fe+	CO	Н	1.90D-09	0.00	000000.0
P& H	H3O+	+Fe	=Fe+	H2O	н	3.10D-09	0.00	000000.0
P& H	02+	+Fe	=Fe+	02		1.10D-09	0.00	000000.0
P& H	Fe+	+ELECIR	=⊢e	PHOTON		3.70D-12	65	000000.0
2790			-C	ELEGIR		2.10E+00	0.00	140000.0
2789	HCN	+SECPHO	=0 =CN	н		6 23D+03	0.00	140000.0
2Z89	HNC	+SECPHO	=CN	H		6.23D+03	0.00	140000.0
2Z89	NH2	+SECPHO	=NH	н		1.60D+02	0.00	140000.0
2Z89	NH2	+SECPHO	=NH2+	ELECTR		1.30D+03	0.00	140000.0
2Z89	NH3	+SECPHO	=NH2	H		2.63D+03	0.00	140000.0
2289	NH3	+SECPHO	=NH	H2		1.08D+03	0.00	140000.0
2209		+SECPHO	=INH3+ _N	O		9.64D+03	0.00	140000.0
2789	NO	+SECPHO	=NO+	FLECTR		9.88D+02	0.00	140000.0
97 83	N	H2	NH	H		8.66D-10	0.50	014600.0
97 83	NH	H2	NH2	н		5.25D-12	0.79	006700.0
97 83	NH2	H2	NH3	н		6.22D-11	0.50	006300.0
14Z90	CN	H2	HCN	Н		3.53D-13	3.31	000756.0
9783	NH	н	N	H2		8.66D-10	0.50	002400.0
97 83		п		H2		5.25D-12 6.22D-11	0.79	002200.0
P& H	NH	0	OH	N		2.90D-11	0.50	000000.0
P& H	NH2	õ	NH	ОН		3.50D-12	0.50	000000.0
97 83	NH3	Ō	NH2	ОH		2.50D-12	0.00	003020.0
P& H	CN	0	CO	Ν		1.80D-11	0.50	000050.0
97 83	NH3	ОН	NH2	H2O		2.30D-12	0.00	000800.0
P& H	NH	C	CN	н		1.10D-10	0.50	000000.0
94 88	CN	N	UN N2	С		2.10D-11 7.30D-10	0.00	000000.0
97 03 P& H	NH	N	N2	н		5.00D-11	0.00	0000000
94E88	OH	N	NO	H		5.30D-11	0.00	000050.0
97 83	O2	N	NO	0		3.30D-12	1.00	003150.0
P& H	NO	С	CN	0		1.10D-10	0.50	000000.0
94E88	NO	N	N2	0		3.40D-11	0.00	000050.0
97 83		0		N L		7.50D-13	1.00	016000.0
GUESS	HNC	0	CO	NH		2 00D-10	0.50	000200.0
GUESS	HNC	он	H2O	CN		2.00D-10	0.50	000200.0
GUESS	HNC	02	CO2	NH		2.00D-11	0.50	002000.0
3Z82	NH2	С	HNC	н		2.00D-11	0.50	000000.0
P& H	CH2	N	HCN	Н		2.00D-11	0.50	000000.0
P& H	CH3	N	HCN	H2		2.00D-11	0.50	000000.0
GUESS		HNC	C2H3+	NH3 NH3		1.00D-09	0.00	000000.0
13B85	N+	H2	NH+	H		8 40D-10	0.00	000168.5
10R80	NH+	H2	NH2+	Н		1.27D-09	0.00	000000.0
10R80	NH+	H2	H3+	Ν		2.25D-10	0.00	000000.0
10R80	NH2+	H2	NH3+	н		2.70D-10	0.00	000000.0
07R83	NH3+	H2	NH4+	Н		2.40D-12	0.00	000000.0
10880	NH2+	н	NH+	H2		0.52D-10 1.27D-09	0.00	024000.0
10R80	NH3+	н	NH2+	H2		2.25D-10	0.00	012800.0
15	NH4+	Н	NH3+	H2		1.00D-09	0.00	011000.0
04R84	CN+	H2	HCN+	Н		1.00D-09	0.00	000000.0
04R84	HCN+	Н	CN+	H2		1.00D-09	0.00	015800.0
01R79	HCN+	H2	H2CN+	Н		9.80D-10	0.00	000000.0
01R/9	H2CN+	H	HCN+	H2		9.80D-10	0.00	034400.0
9289 10880	N2+	н∠ Н	N2H+	н Н2		2.000-09	0.24	000000.0
08B82	N2H+	H2	H3+	N2		1 80D-09	0.00	008300.0
52	H+	HNC	H+	HCN		1.00D-09	0.00	000000.0
15	H+	HCN	H+	HNC		1.00D-09	0.00	007850.0
P& H	H+	NH	NH+	н		2.10D-09	0.00	000000.0
P& H	H+	NH2	NH2+	н		2.90D-09	0.00	000000.0
12H85	Н+ Ц.	NH3 CN	NH3+	Н		5.20D-09	0.00	0000000.0
12R85	н+ Н+	HCN	HCN+	н		1 10D-09	0.00	000000000
01R72	H+	NO	NO+	н		1.90D-09	0.00	000000.0
P& H	He+	NH	N+	H	He	1.10D-09	0.00	000000.0
P& H	He+	NH2	NH+	Н	He	8.00D-10	0.00	000000.0
P& H	He+	NH2	N+	H2	He	8.00D-10	0.00	000000.0
02R75	He+	NH3	NH3+	He	110	2.64D-10	0.00	0.000000
02R/5	He+	NH3 NH3	NH2+ NH+	H H2	пе Но	1.76D-09	0.00	000000.0
P& H	He+	CN	C+	N	He	8.80D-10	0.00	0000000
P& H	He+	CN	N+	c	He	8.80D-10	0.00	000000.0
01R77	He+	HCN	CN+	н	He	1.46D-09	0.00	000000.0
01R77	He+	HCN	CH+	N	He	6.20D-10	0.00	000000.0

01R77	He+	HCN	C+	NH	He		7.75D-10	0.00	0.000000
01R77	He+	HCN	N+	СН	He		2.48D-10	0.00	0.000000
01R77	He+	HNC	CN+	Н	He		1.55D-09	0.00	0.000000
01R77	He+	HNC	C+	NH	He		1.55D-09	0.00	0.000000
02R77	He+	N2	N+	N	He		7.92D-10	0.00	000000.0
02R//	He+	N2	N2+	не	L la		4.08D-10	0.00	000000.0
02877	пе+ Но+	NO		N	Но		2 24D-10	0.00	000000.0
P& H	H3±	NH	NH2+	H2	110		1 30D-09	0.00	000000.0
P& H	H3+	NH2	NH3+	H2			1 80D-09	0.00	00000000
5Z89	H3+	NH3	NH4+	H2			9.10D-09	0.00	000000.0
	H3+	Ν	NH2+	н			4.50D-20	0.00	0.000000
P& H	H3+	CN	HCN+	H2			1.00D-09	0.00	0.000000
P& H	H3+	CN	H2CN+	н			1.00D-09	0.00	0.000000
12R85	H3+	HCN	H2CN+	H2			9.50D-09	0.00	0.000000
12R85	H3+	HNC	H2CN+	H2			9.50D-09	0.00	0.000000
5289	H3+	N2	N2H+	H2			1.30D-09	0.00	000000.0
10000	H3+						1.10D-09	0.00	000000.0
191100	H3O+	CN		04			2.20D-09	0.00	000000.0
19R78	H3O+	HCN	H2CN+	H2O			4.50D-05	0.00	0.00000.0
19R78	H2CN+	H2O	H3O+	HCN			4.50D-09	0.00	002460.0
19R78	H3O+	HNC	H2CN+	H2O			4.50D-09	0.00	0.000000
19R78	H2CN+	H2O	H3O+	HNC			4.50D-09	0.00	010300.0
P& H	HCO+	NH	NH2+	CO			6.40D-10	0.00	0.000000
P& H	NH2+	CO	HCO+	NH			6.40D-10	0.00	006100.0
P& H	HCO+	NH2	NH3+	CO			8.90D-10	0.00	0.000000
05H/8	HCO+	NH3	NH4+	00			1.90D-09	0.00	000000.0
12005			H2CN+	00			3.700-09	0.00	000000.0
0/R71		NO		CO2			1 00D-09	0.00	000000.0
P& H	C+	NH	CN+	H			7 80D-10	0.00	00000000
P& H	C+	NH2	HCN+	H			1.10D-09	0.00	000000.0
05R79	C+	NH3	NH3+	С			5.29D-10	0.00	0.000000
05R79	C+	NH3	H2NC+	Н			7.80D-10	0.00	0.000000
05R79	C+	NH3	H2CN+	н			7.80D-10	0.00	0.000000
05R79	C+	NH3	HCN+	H2			2.08D-10	0.00	0.000000
12R85	C+	HCN	C2N+	н			3.40D-09	0.00	0.000000
12R85	C+	HNC	C2N+	Н			3.40D-09	0.00	000000.0
09884	C+	NO	NO+	0			3.40D-09	0.00	000000.0
09004	0+ N.	0		NO			9.02D-10	0.00	015400.0
17R77	02+	N	NO+	0			7 84D-11	0.00	0000000
18R83	02+	NH3	NH3+	02			2.00D-09	0.00	0.00000.0
08R78	O2+	NO	NO+	02			4.40D-10	0.00	0.000000
P& H	CH2+	Ν	HCN+	н			9.40D-10	0.00	0.000000
P& H	C2H+	N	C2N+	Н			8.30D-10	0.00	0.000000
P& H	CH3+	N	HCN+	H2			6.70D-11	0.00	0.000000
M88	CH3+	N	H2CN+	Н			6.70D-11	0.00	0.000000
M88	C2H2+	N	CH+	HCN			2.50D-11	0.00	000000.0
M88	C2H2+	N	CH+	HNC			2.50D-11	0.00	002600.0
17000	02H2+	02	0211+	⊓∠ N			2.250-10	0.00	000000.0
17R80	N ₊	02	NO+	0			2.01D-10	0.00	000000.0
17R80	N+	02	0+	ŇŎ			3.30D-11	0.00	000000.0
09R84	N+	co	CO+	N			8.25D-10	0.00	0.000000
09R84	N+	CO	NO+	С			1.46D-10	0.00	0.000000
10R80	N+	NO	NO+	N			4.51D-10	0.00	0.000000
10R80	N+	NO	N2+	0			7.95D-11	0.00	0.000000
13R83	NH3+	H2O	NH4+	OH			2.50D-10	0.00	0.000000
13R83	NH4+	ОН	NH3+	H2O			2.50D-10	0.00	003400.0
06880	N2H+	0	UH+	N2			1.40D-10	0.00	003400.0
00002		H20	H30+	N2			2.00D-09	0.00	000000.0
06R80	HCO+	N2	N2H+	CO			8 80D-10	0.00	011200.0
08R82	N2H+	CO2	HCO2+	N2			1.40D-09	0.00	000000.0
08R82	HCO2+	N2	N2H+	CO2			1.40D-09	0.00	006400.0
15R74	N2H+	NH3	NH4+	N2			2.30D-09	0.00	0.000000
15R74	NH4+	N2	N2H+	NH3			2.30D-09	0.00	044000.0
08R82	N2H+	NO	HNO+	N2		:	3.40D-10	0.00	0.000000
01R83	C2N+	NH3	N2H+	C2H2			1.90D-10	0.00	0.000000
01R83	C2N+	NH3	H2CN+	HCN			1.70D-09	0.00	0.000000
P& H	HNO+	C	CH+	NO			1.00D-09	0.00	000000.0
04R/1	HNO+	00	HCO+	NO			1.00D-10	0.00	000000.0
		04	HCO2+	NO			6 20D 10	0.00	000000.0
08882	HNO+	H2O	H3O+	NO			2 300-10	0.00	000000.0
P& H	NO+	Fe	Fe+	NO			1.00D-09	0.00	000000.0
P& H	N+	ELECTR	N	PHOTON		:	3.80D-12	-0.62	0.000000
P& H	NH+	ELECTR	Ν	Н			2.00D-07	-0.50	0.000000
P& H	NH2+	ELECTR	NH	Н			1.50D-07	-0.50	0.000000
P& H	NH2+	ELECTR	Ν	Н	Н		1.50D-07	-0.50	0.000000
22Z90	NH3+	ELECTR	NH2	Н		:	3.00D-07	-0.50	0.00000.0
22Z90	NH4+	ELECTR	NH2	H2			7.60D-07	-0.50	0.000000
22290	INH4+	ELECTR	NH3	H N			1.600-07	-0.50	0.000000.0
76 P0	CON+		C2	IN N			1.000-07	-0.50	0.00000.0
75 88	C2N+	FLECTR	CN	C			1.00D-07 2.00D-07	-0.50	000000.0
75 88	HCN+	ELECTR	CN	Ĥ			1.50D-07	-0.50	0000000
75 88	HCN+	ELECTR	ĊH	N			1.50D-07	-0.50	000000.0
22Z90	N2+	ELECTR	Ν	Ν		:	3.60D-08	-0.42	0.000000
6Z88	N2H+	ELECTR	N2	н			1.70D-07	-1.00	0.000000

7Z88	H2CN+	ELECTR	HCN	H		1.75D-07	-0.50	000000.0
7Z88	H2CN+	ELECTR	HNC	Н		1.75D-07 1.75D-07	-0.50	000000.0
7Z88	H2NC+	ELECTR	NH2	С		1.75D-07	-0.50	0.00000.0
22Z90	NO+	ELECTR	N	0		4.30D-07	-0.37	0.00000.0
Р& П 15	SO	+SECPHO	NO =S	0		3.00D-07 9.64D+02	-0.50	140000.0
15	CS	+SECPHO	=S	č		2.12D+04	0.00	140000.0
15	SH	+SECPHO	=S	Н		1.46D+03	0.00	140000.0
2Z89	OCS	+SECPHO	=CO _S	S Llo		1.07D+04	0.00	140000.0
2Z89	H2S	+SECPHO	=3 =H2S+	ELECTR		3.39D+03	0.00	140000.0
2Z89	SO2	+SECPHO	=SO	0		1.77D+03	0.00	140000.0
16Z88	S	+H2	=SH	Н		1.04D-10	.132	009620.0
16Z88	SH	+H2 +H	=n25 =S	н H2		2.50D-11	0.00	008050.0
16Z88	H2S	+H	=SH	H2		1.29D-11	0.00	000860.0
16Z88	SO	+H	=OH	S		5.90D-10	31	011100.0
16Z88	SO2 0CS	+H ⊥H	=SO _SH	CO		9.25D-09	/4	014/00.0
UMIST	SH	+0	=SO	H		1.60D-10	0.00	000100.0
17Z88	SH	+0	=OH	S		1.70D-11	0.67	000950.0
16288	H2S	+0	=SH _S⊔	OH H2O		1.40D-11	0.00	001920.0
16Z88	CS	+011	=CO	S		2.70D-10	0.00	000760.0
16Z88	CS	+OH	=OCS	н		1.55D-13	1.12	0.00800.0
24Z87	S	+02	=SO	0		5.19D-12	0.00	000265.0
16Z88	SO	+02	=3 =SO2	02		1.40D-13	0.00	002760.0
23Z90	SO	+OH	=SO2	Ĥ		1.96D-10	17	0.00000.0
UMIST	SO	+N	=NO	S		1.73D-11	0.50	000750.0
16Z88	SO	+C +C	=CO =CS	S		7.20D-11	0.00	000000.0
16Z88	SO2	+0	=SO	02		9.27D-11	46	009140.0
16Z88	OCS	+0	=SO	CO		2.60D-11	0.00	002250.0
16Z88	CH	+S	=CS	Н		1.10D-12	0.00	000000.0
16Z88	OH	+5 +S	=5H =SO	Н		1.00D-10	0.00	004000.0
16Z88	SH	+C	=CS	H		2.00D-11	0.00	0.00000.0
16Z88	SH	+C	=CH	S		1.20D-11	0.58	005880.0
16Z88	SH S+	+CO +H2	=00S	н		5.95D-14	1.12	008330.0
18Z86	SH+	+H2	=H2S+	н		1.90D-10	0.00	008500.0
P& H	SH+	+H2	=H3S+	PHOTON		1.00D-15	0.00	000000.0
18286	H2S+	+H2	=H3S+	Н		1.40D-11	0.00	002300.0
18Z86	SH+	+H	=N00+ =S+	H2		1.10D-10	0.00	000000.0
18Z86	H2S+	+H	=SH+	H2		2.00D-10	0.00	0.00000.0
18Z86	H3S+	+H	=H2S+	H2		6.00D-11	0.00	000000.0
GUESS	30+ SH+	+n +S	=3+ =S+	Н		1.00D-10	0.00	000000.0
P& H	H+	+SH	=SH+	н		1.60D-09	0.00	0.00000.0
P& H	H+	+SH	=S+	H2		1.60D-09	0.00	0.00000.0
P& H P& H	H+ H+	+H25 +CS	=H25+ =CS+	н		4 90D-09	0.00	000000.0
P& H	H+	+SO	=SO+	н		3.20D-09	0.00	0.000000.0
P& H	H+	+OCS	=SH+	CO		5.90D-09	0.00	000000.0
P& H P& H	H3+ H3+	+5 ±SH	=5H+ -H2S+	H2 H2		2.60D-09	0.00	000000.0
P& H	H3+	+H2S	=H3S+	H2		3.70D-09	0.00	0.00000.0
P& H	H3+	+CS	=HCS+	H2		2.90D-09	0.00	0.00000.0
P& H 8B82	H3+ H3+	+SO +SO2	=HSO+ -HSO2+	H2 H2		1.90D-09 1.30D-09	0.00	000000.0
8R82	H3+	+OCS	=HOCS+	H2		1.90D-09	0.00	0.00000.0
P& H	He+	+SH	=S+	Н	He	1.70D-09	0.00	0.00000.0
P& H P& H	He+	+H2S +H2S	=S+ _SH+	H2 H	He	3.60D-09	0.00	000000.0
P& H	He+	+H2S	=H2S+	He	110	3.10D-10	0.00	0.000000.0
P& H	He+	+CS	=C+	S	He	1.30D-09	0.00	0.00000.0
P& H	He+	+CS	=S+	C	He	1.30D-09	0.00	000000.0
Р& П Р& Н	He+	+50 +50	=0+ =S+	0	не Не	8.30D-10 8.30D-10	0.00	000000.0
P& H	He+	+OCS	=CS+	0	He	7.60D-10	0.00	0.000000.0
P& H	He+	+OCS	=S+	co	He	7.60D-10	0.00	0.00000.0
P& H P& H	He+ He+	+005	=00+ -0+	5 CS	He He	7.60D-10 7.60D-11	0.00	000000.0
2R73	He+	+SO2	=S+	02	He	8.60D-10	0.00	0.00000.0
2R73	He+	+SO2	=SO+	0	He	3.44D-09	0.00	0.00000.0
P& H P& H	C+	+S ⊥SH	=S+ =CS+	С		1.50D-09	0.00	000000.0
3R78	0+ C+	+H2S	=HCS+	H		1.28D-09	0.00	000000.0
3R78	C+	+H2S	=H2S+	С		4.25D-10	0.00	0.00000.0
P& H	C+	+CS	=CS+	0		1.60D-09	0.00	000700.0
Γα Π P& H	C+ C+	+30 +SO	=3+ =CS+	0		2.60D-10	0.00	000000.0
P& H	C+	+SO	=SO+	С		2.60D-10	0.00	0.000000
P& H	C+	+SO	=CO+	S		2.60D-10	0.00	000000.0
ган P& H	0+ C+	+005 +802	=03+ =SO+	00		1.00D-09 2.30D-09	0.00	000000.0
P& H	CH+	+S	=S+	CH		4.70D-10	0.00	000000.0
P& H	CH+	+S	=SH+	С		4.70D-10	0.00	0.00000.0
гaн	∪П+	+0	=03+	п		4.70D-10	U.UU	0.000000

19Z82	CH+	+SO	=OH+	CS		1.00D-09	0.00	0.000000
19Z82	CH+	+SO	=SH+	CO		1.00D-09	0.00	0.000000
P& H	CH3+	+S	=HCS+	H2		1.40D-09	0.00	0.000000
P& H	CH3+	+SO	=HOCS+	H2		9.50D-10	0.00	0.000000
P& H	CH5+	+S	=SH+	CH4		1.30D-09	0.00	0.000000
P& H	H3O+	+S	=SH+	H2O		3.20D-10	0.00	004930.0
4R/9	H3O+	+H2S	=H3S+	H2O		1.90D-09	0.00	000000.0
		+5	=30+	00		3.30D-10	0.00	000000.0
		+30	=H23+	00		1 200 00	0.00	000000.0
P& H	HCO+	+50	=HSO+	00		7.50D-10	0.00	000000000
7B75	HCO+	+H2S	=H3S+	co		1.60D-09	0.00	0.00000.0
5R78	HCO+	+OCS	=HOCS+	CO		1.10D-09	0.00	0.000000
P& H	O2+	+S	=SO+	0		5.40D-10	0.00	0.000000
P& H	O2+	+S	=S+	O2		5.40D-10	0.00	0.000000
P& H	O2+	+H2S	=H2S+	O2		1.40D-09	0.00	0.000000
P& H	S+	+CH	=CS+	н		6.20D-10	0.00	0.000000
P& H	S+	+CH2	=HCS+	н		1.00D-11	0.00	0.000000
P& H	S+	+OH	=SO+	н		6.10D-10	0.00	0.000000
P& H	S+	+OH	=SH+	0		2.90D-10	0.00	008820.0
P& H	5+	+5H	=5H+	5		9.70D-10	0.00	000350.0
10091	5+ 6,			5		3.20D-10	0.00	000000.0
1000	0+ C,	+110	=NH3+	0		2 200 11	0.00	000000.0
5R8/	NH3+	+02	=30+ -NH4+	SH SH		2.30D-11	0.00	000000.0
P& H	HNO+	+S	=SH+	NO		1 10D-09	0.00	00000000
P& H	N2H+	+S	=SH+	N2		1 10D-09	0.00	00000000
P& H	SH+	+0	=SO+	Н		2.90D-10	0.00	000000.0
P& H	SH+	+0	=S+	OH		2.90D-10	0.00	0.000000
P& H	SH+	+S	=S+	SH		9.70D-10	0.00	0.000000
P& H	SH+	+C	=CS+	Н		9.90D-10	0.00	0.000000
P& H	SH+	+CH	=CH2+	S		5.80D-10	0.00	0.000000
P& H	SH+	+OH	=H2S+	0		3.10D-10	0.00	007500.0
P& H	SH+	+OH	=H2O+	S		4.30D-10	0.00	009200.0
10R81	SH+	+H2O	=H3O+	S		6.30D-10	0.00	0.000000
10R81	SH+	+H2S	=H2S+	SH		5.00D-10	0.00	001000.0
10881	SH+	+H2S	=H3S+	S		5.00D-10	0.00	000000.0
10001	SH+	+NU	=NO+	SH		3.30D-10	0.00	000000.0
10001	оп+ сц.	+1113	=NH3+	5 C		5.25D-10 9.75D 10	0.00	000000.0
P& H		+0	=N114+ -SH+	<u>он</u>		3.10D-10	0.00	000000.0
P& H	H2S+	+0	-50+	H2		3 10D-10	0.00	000000.0
P& H	H2S+	+C	=HCS+	Н		1.00D-09	0.00	0.00000.0
P& H	H2S+	+S	=S+	H2S		1.10D-09	0.00	0.00000.0
10R81	H2S+	+SH	=SH+	H2S		5.00D-10	0.00	0.000000
10R81	H2S+	+NO	=NO+	H2S		3.70D-10	0.00	0.000000
10R81	H2S+	+H2O	=H3O+	SH		8.10D-10	0.00	0.000000
10R81	H2S+	+NH3	=NH4+	SH		1.36D-09	0.00	0.000000
10R81	H2S+	+NH3	=NH3+	H2S		3.40D-10	0.00	0.000000
10R81	H3S+	+NH3	=NH4+	H2S		1.90D-09	0.00	0.000000
13R78	H3S+	+HCN	=H2CN+	H2S		1.90D-09	0.00	0.000000
19282	HCS+	+0	=HCO+	S		1.00D-09	0.00	000000.0
	SU+	+1113	=NH3+	50		1.30D-09	0.00	000000.0
P& H	SH+ SH+	+re +Fo	=Fe+	S SH		1.80D-10	0.00	000000.0
P& H	SO+	+Fe	=Fe+	SO		1.60D-09	0.00	00000000
P& H	H2S+	+Fe	=Fe+	H2S		1.80D-09	0.00	0.00000.0
P& H	S+	+ELECTR	=S	PHOTON		3.90D-12	63	0.000000
P& H	SH+	+ELECTR	=S	н		2.00D-07	50	0.000000
P& H	H2S+	+ELECTR	=SH	Н		1.50D-07	50	0.000000
P& H	H2S+	+ELECTR	=S	Н	Н	1.50D-07	50	0.000000
P& H	H2S+	+ELECTR	=H2S	PHOTON		1.10D-10	70	0.000000
P& H	H3S+	+ELECTR	=H2S	н		3.00D-07	50	0.000000
P& H	H3S+	+ELECTR	=SH	H2		1.00D-07	50	0.00000.0
P&H	05+	+ELEGTR	=0	5		2.00D-07	50	000000.0
P& F 01701	U0+	+ELECTR	=0	ъ ц		2.00D-07	50	000000.0
21291 D2 U	RU3+		=05			2.00D-07	50	000000.0
P& H			-50	ц Ц		2.00D-07	50	000000.0
UMIST	HSO2+	FLECTR	-00 SO	н	0	1.00E-07	- 50	00000000
UMIST	HSO2+	ELECTR	SO	OH	-	1.00E-07	50	0.00000.0
P& H	HOCS+	+ELECTR	=OH	CS		2.00D-07	50	000000.0
P& H	HOCS+	+ELECTR	=OCS	H		2.00D-07	50	0.000000
L&G90	Si	+SECPHO	=Si+	ELECTR		3.00D+03	0.00	140000.0
L&G90	SiO	+SECPHO	=Si	0		3.00D+03	0.00	140000.0
L&G90	SiO2	+SECPHO	=SiO	0		3.00D+03	0.00	140000.0
2Z89	SiH	+SECPHO	=Si	Н		1.46D+03	0.00	140000.0
13 87	SiH4	+SECPHO	=SiH3	Н		4.68D+03	0.00	140000.0
McKay	SiH4	н	SiH3	H2		2.60D-11	0.00	001400.0
Makay	SIH3	н	SIH2	H2		2.00D-11	0.00	000000.0
McKay	Si⊓∠ Si⊔	н	Sin Si	⊡∠ H2		2.000-11	0.00	000000.0
McKay	SiH2	02	SiO	H2O		7.50D-11	0.00	000000.0
McKay	SiH	02	SiO	OH		1.70D-10	0.00	0000000
UMIST	SiH2	0	SiO	Ĥ	н	5.00D-11	0.50	0.000000
UMIST	SiH	0	SiO	н		4.00D-11	0.50	0.000000
ROW01	l Si	02	SiO	0		1.72D-10	-0.53	000017.0
ROW01	l Si	OH	SiO	н		1.72D-10	-0.53	000017.0
HRBST	SiO	OH	SiO2	H		1.00D-12	-0.70	0.00000.0
2063	Si+	H2	SiH2+	PHOTON		3.00D-18	0.00	0.00000.0
2227	SIH+	H2	SIH3+	PHOION		3.00D-17	-1.00	0.00000.0
∠409	JIT13+	174	3ILI3+	FILLIN		1.000-18	-u.su	0.00000.0

1724	Si+	H2	SiH+	н		1.50D-10	0.00	014310.0
27B77 28B75	SiH+ SiH2+	H2 H2	SiH2+ SiH3+	н		1.20D-09 7.00D-10	0.00	028250.0
28B75	SiH3+	H2	SiH4+	н		2.00D-10	0.00	047390.0
2570	SiH4+	H2	SiH5+	Н		1.00D-09	0.00	000000.0
2223	SiH+	Н	Si+	H2		1.90D-09	0.00	000000.0
27B77 28B75	SIH2+ SiH3+	н	SIH+ SiH2+	H2 H2		7.00D-10	0.00	000000.0
28B75	SiH4+	н	SiH3+	H2		2.00D-10	0.00	000000.0
28B75	SiH5+	Н	SiH4+	H2		4.00D-11	0.00	004470.0
2791	SiO+	H2	SiOH+	н		3.20D-10	0.00	000000.0
383 411	н+ Н+	SiH	SiH+	н		9.90E-10 1 70E-09	0.00	000000.0
412	H+	SiH	Si+	H2		1.70E-09	0.00	000000.0
419	H+	SiH2	SiH2+	Н		1.50E-09	0.00	000000.0
420	H+	SiH2	SiH+	H2		1.50E-09	0.00	000000.0
425	н+ Н+	SiH3	SiH3+ SiH2+	н H2		1.50E-09	0.00	000000.0
429	H+	SiH4	SiH4+	Н		1.50E-09	0.00	000000.0
430	H+	SiH4	SiH3+	H2		1.50E-09	0.00	000000.0
461	H+	SiO	SiO+	H		3.30E-09	0.00	000000.0
812	He+ He+	SiH	Si+	Н	He	1.80E-09	0.00	000000.0
821	He+	SiH2	SiH+	H	Не	1.00E-09	0.00	000000.0
822	He+	SiH2	Si+	H2	He	1.00E-09	0.00	000000.0
829	He+	SiH3	SiH2+	H	He	1.00E-09	0.00	000000.0
834	He+ He+	SiH4	SiH3+	H2	Не	1.00E-09	0.00	000000.0
835	He+	SiH4	SiH2+	H2	He	1.00E-09	0.00	000000.0
879	He+	SiO	Si+	0	He	8.60E-10	0.00	000000.0
880	He+	SIO	0+ SiO+	Si	He	8.60E-10	0.00	000000.0
L&G90	He+	SiO2	SiO+ Si+	02	He	5.00E-10	0.00	000000.0
1033	C+	Si	Si+	С		2.10E-09	0.00	000000.0
1072	C+	SiH2	SiH2+	C		1.00E-09	0.00	000000.0
1078	C+	SIH3 SiO	SIH3+ Si+	0		1.00E-09 5.40E-10	0.00	000000.0
L&G90	C+	SiO2	SiO+	co		1.00E-09	-0.60	000000.0
2471	S+	Si	Si+	S		1.60E-09	0.00	000000.0
2489	S+	SiH	SiH+	S		4.20E-10	0.00	000000.0
644	H3+	SiH	SiH2+	H2		2.00E-09	0.00	000000.0
•••	H3+	Si	SiH2+	Н		1.70E-09	0.00	000000.0
648	H3+	SiH2	SiH3+	H2		2.00E-09	0.00	000000.0
652	H3+	SIH3 SIH4	SIH4+	H2		2.00E-09	0.00	000000.0
680	H3+	SiO	SiOH+	H2		2.00E-09	0.00	000000.0
1731	H3O+	Si	SiH+	H2O		1.80E-09	0.00	000000.0
1745	H3O+	SiH	SiH2+	H2O		9.70E-10	0.00	000000.0
1764	H3O+	SiO	SIN3+ SIOH+	H2O		2.00E-09 2.00E-09	0.00	000000.0
2258	HCO+	Si	SiH+	CO		1.60E-09	0.00	000000.0
2279	HCO+	SiH	SiH2+	CO		8.70E-10	0.00	000000.0
2283	HCO+	SiH2 SiH4	SiH3+ SiH5+	00		2.00E-09	0.00	000000.0
2305	HCO+	SiO	SiOH+	CO		7.90E-10	0.00	000000.0
2071	Si+	OH	SiO+	Н		6.30E-10	0.00	000000.0
L&G90	Si+	H2O	SiOH+	Н		2.30E-10	-0.60	000000.0
2082	SiH+	02	SiO+ SiO+	Н		4.00E-13	0.00	000000.0
2229	SiH+	NH3	NH4+	Si		1.00E-09	0.00	000000.0
2230	SiH+	H2O	H3O+	Si		8.00E-10	0.00	000000.0
2391	SiH2+	0	SIOH+	H		6.30E-10	0.00	000000.0
2393	SiH2+ SiH3+	02	SiOH+	H2		2.40E-11 2.00E-10	0.00	000000.0
2571	SiH4+	H2O	H3O+	SiH3		2.00E-09	0.00	000000.0
2572	SiH4+	CO	HCO+	SiH3		1.00E-09	0.00	000000.0
2623	SIH5+ Si+	H2O ELECTR	H3U+ Si			2.00E-09	0.00	000000.0
3125	SiH+	ELECTR	Si	H		2.00E-07	-0.50	000000.0
3135	SiH2+	ELECTR	Si	Н	Н	2.00E-07	-0.50	000000.0
3136	SiH2+	ELECTR	SiH	H		1.50E-07	-0.50	000000.0
3137	SIH2+ SiH3+	ELECTR	SiH2	H2 H		1.50E-07 1.50E-07	-0.50	000000.0
3147	SiH3+	ELECTR	SiH	H2		1.50E-07	-0.50	000000.0
3156	SiH4+	ELECTR	SiH3	н		1.50E-07	-0.50	000000.0
3157	SiH4+	ELECTR	SiH2	H2		1.50E-07	-0.50	000000.0
3163	SiH5+	FLECTR	SiH4 SiH3	н Н2		1.50E-07	-0.50	000000.0
3227	SiO+	ELECTR	Si	0		2.00E-07	-0.50	000000.0
3247	SiOH+	ELECTR	SiO	Н		1.50E-07	-0.50	000000.0
3248	SIOH+ Ma**	ELECTR	SI -GRAIN	OH He	Ma	1.50E-07	-0.50	000000.0
EROSI	Fe**	+He	=GRAIN	He	Fe	1.151D-2	73.0	0040.976
EROSI	Si**	+He	=GRAIN	He	Si	1.224D-2	73.0	0042.175
EROSI	C**	+He	=GRAIN	He	C	1.224D-2	73.0	0042.175
EROSI	0 Ma**	+пе +С	=GRAIN =GRAIN	С	Ma	2.935D-2	73.0 48.0	0036.740
EROSI	Fe**	+C	=GRAIN	C	Fe	2.386D-2	47.0	0042.794
EROSI	Si**	+C	=GRAIN	С	Si	2.698D-2	48.0	0036.502
EROSI	0**	+0 +C	=GRAIN =GRAIN	c	0	2.090D-2 1.054D-1	40.0 48 0	0030 812
		-						

EROSI Mg** EROSI Fe**	+N +N	=GRAIN =GRAIN	N N	Mg Fe	2.935D-2 48.0 2.386D-2 47.0	0036.740
EROSI C**	+N +N	=GRAIN =GRAIN	N	C	2.698D-2 48.0 2.698D-2 48.0	0036.502
EROSI O**	+N	=GRAIN	Ν	0	1.054D-1 48.0	0030.812
EROSI Mg**	+0	=GRAIN	0	Mg Fe	2.884D-2 48.0	0030.238
EROSI Si**	+0	=GRAIN	õ	Si	3.373D-2 47.0	0037.810
EROSI C**	+0	=GRAIN	0	С	3.373D-2 47.0	0037.810
EROSI Ma**	+0 +H2O	=GRAIN =GRAIN	H2O	Mg	2.884D-2 48.0	0031.588
EROSI Fe**	+H2O	=GRAIN	H2O	Fe	4.116D-2 44.0	0059.438
EROSI Si**	+H2O +H2O	=GRAIN	H2O H2O	Si C	3.373D-2 47.0 3.373D-2 47.0	0037.810
EROSI O**	+H2O	=GRAIN	H2O	õ	1.006D-1 47.0	0031.588
EROSI Mg**	+N2	=GRAIN	N2	Mg	2.093D-2 48.0	0027.730
EROSI Si**	+N2	=GRAIN	N2	Si	2.217D-2 47.0	0042.335
EROSI C**	+N2	=GRAIN	N2	С	2.217D-2 47.0	0028.013
EROSI O** EROSI Ma**	+N2 +CO	=GRAIN =GRAIN	N2 CO	O Ma	1.149D-1 46.0 2.093D-2 48.0	0046.018
EROSI Fe**	+CO	=GRAIN	CO	Fe	4.324D-2 47.0	0042.335
EROSI Si**	+CO	=GRAIN	CO	Si	2.217D-2 47.0	0028.013
EROSI O**	+00	=GRAIN	co	õ	1.149D-1 46.0	0046.018
EROSI Mg**	+02	=GRAIN	02	Mg	2.093D-2 48.0	0027.730
EROSI Fe^^ EROSI Si**	+02	=GRAIN =GRAIN	02	Fe Si	4.324D-2 47.0 2.217D-2 47.0	0042.335
EROSI C**	+02	=GRAIN	02	C	2.217D-2 47.0	0028.013
EROSI O**	+O2 +GRAIN	=GRAIN =CH4*	02	0	1.149D-1 46.0	0046.018
ADSORCH	+GRAIN	=CH4*			1.00D+00	0000102.
ADSORCH2	+GRAIN	=CH4*			1.00D+00	0000102.
ADSORCH3	+GRAIN +GRAIN	=CH4* =CH4*			1.00D+00 1.00D+00	0000102.
ADSORO	+GRAIN	=H2O*			1.00D+00	0000102.
ADSORO2	+GRAIN	=02* -H2O*			1.00D+00	0000102.
ADSORH20	+GRAIN	=H2O*			1.00D+00	0000102.
ADSORCO	+GRAIN	=CO*			1.00D+00	0000102.
ADSORC02	+GRAIN +GRAIN	=CO2 =CH4*	CH4*		1.00D+00 1.00D+00	0000102.
ADSORC2H	+GRAIN	=CH4*	CH4*		1.00D+00	0000102.
ADSORC2H2	+GRAIN	=CH4* -CH4*	CH4* CH4*	CH4*	1.00D+00 1.00D+00	0000102.
ADSORC3H	+GRAIN	=CH4*	CH4*	CH4*	1.00D+00	0000102.
ADSORC3H2	+GRAIN	=CH4*	CH4*	CH4*	1.00D+00	0000102.
ADSORN	+GRAIN +GRAIN	=NH3 =NH3*			1.00D+00 1.00D+00	0000102.
ADSORNH2	+GRAIN	=NH3*			1.00D+00	0000102.
ADSORNH3	+GRAIN	=NH3* -CH4*	NH3*		1.00D+00 1.00D+00	0000102.
ADSORHCN	+GRAIN	=CH4*	NH3*		1.00D+00	0000102.
ADSORHNC	+GRAIN	=CH4*	NH3*		1.00D+00	0000102.
ADSORNO	+GRAIN	=N2 =H2O*	NH3*		1.00D+00	0000102.
ADSORS	+GRAIN	=H2S*			1.00D+00	0000102.
ADSORSH ADSORH2S	+GRAIN +GRAIN	=H2S^ =H2S*			1.00D+00 1.00D+00	0000102.
ADSORCS	+GRAIN	=CH4*	H2S*		1.00D+00	0000102.
ADSORSO	+GRAIN	=H2O*	H2S*	L12C*	1.00D+00	0000102.
ADSOROCS	+GRAIN	=0CS*	H2U	H23	1.00D+00	0000102.
ADSORFe	+GRAIN	=Fe*			1.00D+00	0000102.
ADSORSI	+GRAIN +GRAIN	=51H4 =SiH4*			1.00D+00 1.00D+00	0000102.
ADSORSiH2	+GRAIN	=SiH4*			1.00D+00	0000102.
ADSORSIH3	+GRAIN +GRAIN	=SiH4^ =SiH4*			1.00D+00 1.00D+00	0000102.
ADSORSIO	+GRAIN	=SiO*			1.00D+00	0000102.
ADSORSIO2	+GRAIN	=SiO2*	ц	GRAIN	1.00D+00	0000102.
SPUTT CH4*	+H2	=CH4	H2	GRAIN	1.00D-04 0.00	002000.0
SPUTT CH4*	+He	=CH4	He	GRAIN	8.00D-04 0.00	002000.0
SPUTT H2O*	+⊓ +H2	=H2O =H2O	н H2	GRAIN	4.00D-05 0.00 1.00D-04 0.00	006000.0
SPUTT H2O*	+He	=H2O	He	GRAIN	8.00D-04 0.00	006000.0
SPUTT CO*	+H +H2	=CO =CO	H H2	GRAIN	4.00D-05 0.00	001900.0
SPUTT CO*	+He	=CO	He	GRAIN	8.00D-04 0.00	001900.0
SPUTT CO2*	+H	=CO2	H	GRAIN	4.00D-05 0.00	003100.0
SPUTT CO2*	+⊓∠ +He	=002 =CO2	He	GRAIN	8.00D-04 0.00	003100.0
SPUTT NH3*	+H	=NH3	Н	GRAIN	4.00D-05 0.00	003600.0
SPUTT NH3*	+⊓∠ +He	=NH3 =NH3	r⊐∠ He	GRAIN	8.00D-04 0.00	003600.0
SPUTT CH3OH*	+H	=CH3OH	Н	GRAIN	4.00D-05 0.00	006000.0
SPUTT CH3OH*	+H2 +He	-CH3OH	H2 He	GRAIN	1.00D-04 0.00	006000.0
SPUTT H2CO*	+H	=H2CO	Н	GRAIN	4.00D-05 0.00	006000.0
SPUTT H2CO*	+H2	=H2CO	H2	GRAIN	1.00D-04 0.00	006000.0
51'011 H260"	+П6	===200	i le	GINAIN	0.000-04 0.00	0.00000.0

SPUTT HCO2H*	+H	=HCO2H	Н	GRAIN	4.00D-05	0.00	006000.0
SPUTT HCO2H*	+H2	=HCO2H	H2	GRAIN	1.00D-04	0.00	006000.0
SPUTT HCO2H*	+He	=HCO2H	He	GRAIN	8.00D-04	0.00	006000.0
SPUTT OCS*	+H	=OCS	н	GRAIN	4.00D-05	0.00	006000.0
SPUTT OCS*	+H2	=OCS	H2	GRAIN	1.00D-04	0.00	006000.0
SPUTT OCS*	+He	=OCS	He	GRAIN	8.00D-04	0.00	006000.0
SPUTT H2S*	+H	=H2S	Н	GRAIN	4.00D-05	0.00	006000.0
SPUTT H2S*	+H2	=H2S	H2	GRAIN	1.00D-04	0.00	006000.0
SPUTT H2S*	+He	=H2S	He	GRAIN	8.00D-04	0.00	006000.0
DESORCH4*	+CRP	=CH4	GRAIN		7.00D+01	0.00	0.000000
DESORH2O*	+CRP	=H2O	GRAIN		7.00D+01	0.00	0.000000
DESORCO*	+CRP	=CO	GRAIN		7.00D+01	0.00	0.000000
DESORCO2*	+CRP	=CO2	GRAIN		7.00D+01	0.00	0.000000
DESORNH3*	+CRP	=NH3	GRAIN		7.00D+01	0.00	0.000000
DESORCH3OH*	+CRP	=CH3OH	GRAIN		7.00D+01	0.00	0.000000
DESORH2CO*	+CRP	=H2CO	GRAIN		7.00D+01	0.00	0.000000
DESORHCO2H*	+CRP	=HCO2H	GRAIN		7.00D+01	0.00	0.000000
DESOROCS*	+CRP	=OCS	GRAIN		7.00D+01	0.00	0.000000
DESORH2S*	+CRP	=H2S	GRAIN		7.00D+01	0.00	0.000000
END							